Deadlines

• Jan 29 (11:59pm)
 • Presentation choice submission (submission on course webpage)

• Jan 31 (11:59pm)
 • First paper review (submission through Canvas assignments)

• Feb 17 (in class)
 • Proposal presentation
Topics

• Propositional logic review
• Boolean satisfiability problem (SAT)
• Satisfiability Modulo Theories (SMT)
Topics

- Propositional logic review
- Boolean satisfiability problem (SAT)
- Satisfiability Modulo Theories (SMT)
Syntax of propositional logic

\[(\neg p \land \top) \lor (q \rightarrow \bot)\]

Atom
- truth symbols: \(\top \) ("true"), \(\bot \) ("false")
- propositional variables: \(p, q, r \)

Literal
- an atom \(\alpha \) or its negation \(\neg \alpha \)

Formula
- an atom or the application of a *logical connective* to formulas \(F_1, F_2 \):

<table>
<thead>
<tr>
<th>(\neg F_1)</th>
<th>"not"</th>
<th>(negation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 \land F_2)</td>
<td>"and"</td>
<td>(conjunction)</td>
</tr>
<tr>
<td>(F_1 \lor F_2)</td>
<td>"or"</td>
<td>(disjunction)</td>
</tr>
<tr>
<td>(F_1 \rightarrow F_2)</td>
<td>"implies"</td>
<td>(implication)</td>
</tr>
<tr>
<td>(F_1 \leftrightarrow F_2)</td>
<td>"if and only if"</td>
<td>(iff)</td>
</tr>
</tbody>
</table>
Semantics of propositional logic: interpretations

• An **interpretation** I for a propositional formula F maps every variable in F to a truth value:

$$I : \{ p \mapsto \text{true}, q \mapsto \text{false}, \ldots \}$$

• I is a **satisfying interpretation** of F, written as $I \models F$, if F evaluates to true under I
 • A satisfying interpretation is also called a **model**
• I is a **falsifying interpretation** of F, written as $I \not\models F$, if F evaluates to false under I
Semantics of propositional logic: definition

• **Base cases:**

 \[\models T \]
 \[\models \bot \]
 \[\models p \quad \text{iff } \models [p] = \text{true} \]
 \[\models \neg p \quad \text{iff } \models [p] = \text{false} \]

• **Inductive cases:**

 \[\models \neg F \quad \text{iff } \models \neg F \]
 \[\models F_1 \land F_2 \quad \text{iff } \models F_1 \text{ and } \models F_2 \]
 \[\models F_1 \lor F_2 \quad \text{iff } \models F_1 \text{ or } \models F_2 \]
 \[\models F_1 \rightarrow F_2 \quad \text{iff } \models \neg F_1 \text{ or } \models F_2 \]
 \[\models F_1 \leftrightarrow F_2 \quad \text{iff } \models F_1 \text{ and } \models F_2 \text{, OR } \models \neg F_1 \text{ and } \models \neg F_2 \]
Semantics of propositional logic: example

\[F: (p \land q) \rightarrow (p \lor \neg q) \]
\[I: \{p \leftrightarrow \text{true}, q \leftrightarrow \text{false}\} \]

\[I \models F \]
Topics

• Propositional logic review
• Boolean satisfiability problem (SAT)
• Satisfiability Modulo Theories (SMT)
Satisfiability & validity of propositional formulas

• F is **satisfiable** iff $I \models F$ for some I

• F is **valid** iff $I \models F$ for all I

• **Duality** of satisfiability and validity:
 • F is valid iff $\neg F$ is unsatisfiable.
Techniques for deciding satisfiability & validity

SAT Solver

Search
Enumerate all interpretations (i.e., build a truth table), and check whether they satisfy the formula.

Deduction
Assume the formula is invalid, apply proof rules, and check for contradiction in every branch of the proof tree.
Proof by search: enumerating interpretations

• \(F: (p \land q) \rightarrow (p \lor \neg q) \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof by deduction: semantic arguments

• A **proof rule** consists of
 • **Premise**: facts that have to hold to apply the rule
 • **Conclusion**: facts derived from applying the rule

• Where
 • **Commas** indicate derivation of multiple facts
 • **Pipes** indicate alternative facts (branches in the proof)
Proof by deduction: semantic arguments

\[
I \models \neg F \\
\therefore I \not\models F
\]

\[
I \models F_1 \land F_2 \\
\therefore I \models F_1, I \models F_2
\]

\[
I \models F_1 \lor F_2 \\
\therefore I \models F_1 \mid I \models F_2
\]

\[
I \models F_1 \rightarrow F_2 \\
\therefore I \not\models F_1 \mid I \models F_2
\]

\[
I \models F_1 \leftrightarrow F_2 \\
\therefore I \not\models F_1 \lor F_2 \mid I \models F_1 \land F_2
\]

\[
I \not\models \neg F \\
\therefore I \models F
\]

\[
I \not\models F_1 \land F_2 \\
\therefore I \not\models F_1 \mid I \not\models F_2
\]

\[
I \not\models F_1 \lor F_2 \\
\therefore I \not\models F_1, I \not\models F_2
\]

\[
I \not\models F_1 \rightarrow F_2 \\
\therefore I \not\models F_1 \mid I \not\models F_2
\]

\[
I \not\models F_1 \leftrightarrow F_2 \\
\therefore I \not\models F_1 \lor F_2 \mid I \models F_1 \land \neg F_2
\]

Proving \((p \land (p \rightarrow q)) \rightarrow q\):

\[
I \not\models (p \land (p \rightarrow q)) \rightarrow q
\]

\[
I \models (p \land (p \rightarrow q)) , I \not\models q
\]

\[
I \models p , I \models (p \rightarrow q)
\]

\[
I \not\models p \mid I \models q
\]

Contradiction!

So the formula is valid.
Getting ready for SAT solving with normal forms

• Arbitrary formula can be hard to solve!

• **Normal form**: a syntactic restriction such that every formula in the logic has an equivalent formula in the normal form

• Three important normal forms for propositional logic:
 • Negation Normal Form (NNF)
 • Disjunctive Normal Form (DNF)
 • Conjunctive Normal Form (CNF)
Negation Normal Form (NNF)

Atom := Variable | T | F
Literal := Atom | ¬Atom
op := ∧ | ∨
Formula := Literal | Formula op Formula

- The only allowed connectives are ∧, ∨, and ¬.
- ¬ can appear only in literals.

Conversion to NNF performed using **De Morgan’s Laws:**

\[-(F \land G) \iff \neg F \lor \neg G\]
\[-(F \lor G) \iff \neg F \land \neg G\]
Disjunctive Normal Form (DNF)

Atom ::= Variable | T | ⊥
Literal ::= Atom | ¬Atom
Clause ::= Literal | Literal ∧ Clause
Formula ::= Clause ∨ Formula

• Disjunction of conjunction of literals
• Deciding satisfiability of a DNF formula is trivial
• However, may incur exponential increase in formula size

To convert to DNF, convert to NNF and distribute ∧ over ∨:

\[(F \land (G \lor H)) \iff (F \land G) \lor (F \land H)\]
\[(G \lor H) \land F \iff (G \land F) \lor (H \land F)\]
Conjunctive Normal Form (CNF)

- Conjunction of disjunction of literals
- Deciding the satisfiability of a CNF formula is hard
- \textbf{SAT solvers use CNF as their input language}
 - Linear increase in formula size

Atom := Variable | \(T \) | \(\bot \)
Literal := Atom | \(\neg \)Atom
Clause := Literal | Literal \(\lor \) Clause
Formula := Clause \(\land \) Formula

To convert to CNF, convert to NNF and distribute \(\lor \) over \(\land \):
\[
(FV(G \land H)) \iff (FV G) \land (FV H)
\]
\[
((G \land H) \lor F) \iff (G \lor F) \land (H \lor F)
\]
Propositional formula to CNF: Tseitin’s transformation

- Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses
Solving CNF: Proof by resolution

Resolution rule

\[
\begin{array}{c}
a_1 \lor \ldots \lor a_n \lor \beta \\
\hline
b_1 \lor \ldots \lor b_m \lor \neg \beta \\
\hline
a_1 \lor \ldots \lor a_n \lor b_1 \lor \ldots \lor b_m
\end{array}
\]

Unit resolution rule

\[
\begin{array}{c}
\beta \\
\hline
b_1 \lor \ldots \lor b_m \lor \neg \beta \\
\hline
b_1 \lor \ldots \lor b_m
\end{array}
\]

• Proving that a CNF formula is valid can be done using just this one proof rule!

• Apply the rule until a contradiction, or no more applications are possible

• Unit resolution specializes the resolution rule to the case where one of the clauses is unit (a single literal)
// Returns true if the CNF formula F is satisfiable; otherwise returns false.
DPLL(F):
G ← BCP(F)
if G = ⊤ then return true
if G = ⊥ then return false
p ← choose(vars(G))
return DPLL(G{p → ⊤}) || DPLL(G{p → ⊥})

• **Boolean Constraint Propagation (BCP)** applies unit resolution until fixed point
• If BCP cannot reduce F to constant, we choose an unassigned variable and recurse assuming the variable is true or false
• If the formula is satisfiable under either assumption, then it has a satisfying assignment. Otherwise, it’s unsatisfiable.
DPLL: example

- An implication graph $G = (V, E)$ is a DAG recording the history of decisions and the resulting BCP deductions.
 - $v \in V$ is a literal and the decision level it got decided.
 - $\langle v, w \rangle \in E$ is labeled with antecedent(w), i.e., the clause from which w got decided.
DPLL: example

Can we learn from conflicts and avoid repeating that?

Implication graph

Decision literal
Implied literal
Conflict

Can we learn from conflicts and avoid repeating that?

Decision tree
Conflict-Driven Clause Learning (CDCL)

What gave rise to this implication graph?

UIP: any node (other than the conflict) on all paths from the current decision level to conflict.

First UIP is the one closest to conflict.

- A **conflict clause** blocks partial assignments leading to the conflict.
- Every cut that separates sources from the sink defines a valid conflict clause.
- Cut after the first **unique implication point (UIP)** gets the shortest conflict clause.

Should be “clause” (not “cause”), the video version is incorrect.
CDCL: algorithm

\text{ANALYZECONFLICT()}: \\
d \leftarrow \text{level}(\text{conflict}) \\
\text{if} \ d=0 \ \text{then return} \ -1 \\
c \leftarrow \text{antecedent}(\text{conflict}) \\
\text{while} \ !\text{oneLitAtLevel}(c, d) \\
\quad t \leftarrow \text{lastAssignedLitAtLevel}(c, d) \\
\quad v \leftarrow \text{varOfLit}(t) \\
\quad a \leftarrow \text{antecedent}(t) \\
\quad c \leftarrow \text{resolve}(a, c, v) \\
b \leftarrow \text{assertingLevel}(c) \\
\text{return} \ (b, c)

Start from the direct antecedent for conflict, traverse back until there is only one literal decided/implied at the current (highest) decision level in \(c \)

Apply resolution rule to \(a \) and \(c \) with respect to variable \(v \)

Backtrack to the second highest decision level in the newly derived constraint \(c \)

- Backtrack to level \(b \)
- Add \(c \) into the original formula
CDCL: example

c_1: ¬x_1 ∨ x_5 ∨ x_6

c_2: ¬x_5 ∨ x_7

c_3: ¬x_1 ∨ ¬x_6 ∨ ¬x_7

c_4: ¬x_1 ∨ x_2 ∨ x_5

c_5: ¬x_1 ∨ ¬x_3 ∨ x_5

c_6: ¬x_1 ∨ ¬x_4 ∨ x_5

c_7: x_1 ∨ ¬x_5

Implication graph

Decision tree

START

¬x_1

¬x_5

¬x_2

¬x_3

¬x_4

¬x_6

x_7

x_6

x_5

x_1

Implication graph

t ← lastAssignedLitAtLevel(c, d)
v ← varOfLit(t)
a ← antecedent(t)
c ← resolve(a, c, v)

Only x_5 at level 2, done!
Topics

• Propositional logic review
• Boolean satisfiability problem (SAT)
• Satisfiability Modulo Theories (SMT)
Satisfiability Modulo Theories (SMT)

• Some problems are more naturally expressed in other logics than propositional logic, e.g.:
 • Software verification needs reasoning about equality, arithmetic, data structures, ...

• SMT consists in deciding the satisfiability of a (quantifier-free) first-order formula with respect to a background theory

• Example:
 • Equality with Uninterpreted Functions (EUF)

\[g(a)=c \land (f(g(a)) \neq f(c) \lor g(a)=d) \land c \neq d \]
Syntax of first-order logic (FOL)

• Logical symbols
 • Connectives: ¬, ∧, ∨, →, ↔
 • Parentheses: (,)
 • Quantifiers: ∃, ∀

• Non-logical symbols
 • Constants: x, y, z
 • N-ary functions: f(x), x+y
 • N-ary predicates: p(x), x>y
 • Variables: u, v, w

Usually only consider quantifier-free ground formulas
SMT: basic architecture

- Equality + UF
- Arithmetic
- Bit-vectors
- ...

SAT + Theory Solvers = SMT
SMT: basic idea

\[
x \geq 0, y = x + 1, (y > 2 \lor y < 1)
\]

\[
p_1, p_2, (p_3 \lor p_4)
\]

\[
p_1 \leftrightarrow (x \geq 0), p_2 \leftrightarrow (y = x + 1),
p_3 \leftrightarrow (y > 2), p_4 \leftrightarrow (y < 1)
\]

\[
p_1, p_2, \neg p_3, p_4
\]

\[
x \geq 0, y = x + 1, \neg (y > 2), y < 1
\]

Conflict clause

SAT

p1, p2, (p3 \lor p4)

p1 \leftrightarrow (x \geq 0), p2 \leftrightarrow (y = x + 1),
p3 \leftrightarrow (y > 2), p4 \leftrightarrow (y < 1)

p1, p2, \neg p3, p4

x \geq 0, y = x + 1, y < 1

\neg p1 \lor \neg p2 \lor \neg p3 \lor \neg p4

x \geq 0, y = x + 1, y < 1

Theory Solvers
Common theories

• Equality (and uninterpreted functions)
 • \(x = g(y) \)

• Fixed-width bitvectors
 • \((b \gg 1) = c \)

• Linear arithmetic (over R and Z)
 • \(2x + y \leq 5 \)

• Arrays
 • \(a[i] = x \)
Theories of linear integer and real arithmetic

• Signature
 • Integers (or reals)
 • Arithmetic operations: multiplication by an integer (or real) number, +, -.
 • Predicates: =, ≤.
 • Expanded with all constant symbols: x, y, z, ...

• Deciding TLIA and TLRA
 • Polynomial time for linear real arithmetic (LRA)
 • NP-complete for linear integer arithmetic (LIA)
LIA example: compiler optimization

for (i=1; i<=10; i++) {
 a[j+i] = a[j];
}

int v = a[j];
for (i=1; i<=10; i++) {
 a[j+i] = v;
}

A LIA formula that is unsatisfiable iff this optimization is valid:

\((i \geq 1) \land (i \leq 10) \land (j + i = j)\)
Theory of arrays

• Signature
 • Array operations: \texttt{read}, \texttt{write}
 • Equality: =
 • Expanded with all constant symbols: \texttt{x}, \texttt{y}, \texttt{z}, ...

• Axioms
 • \(\forall a, i, v. \text{read(write}(a, i, v), i) = v\)
 • \(\forall a, i, j, v. \neg(i = j) \rightarrow (\text{read(write}(a, i, v), j) = \text{read}(a, j))\)
 • \(\forall a, b. (\forall i. \text{read}(a, i) = \text{read}(b, i)) \rightarrow a = b\)

• Deciding \(T_A\)
 • Satisfiability problem: NP-complete
 • Used in many software verification tools to model memory
SMT tools

• Z3: https://github.com/Z3Prover/z3
 • Supported theories: empty theory, linear arithmetic, nonlinear arithmetic, bitvectors, arrays, datatypes, quantifiers, strings

• CVC4: https://cvc4.github.io/
 • Supported theories: rational and integer linear arithmetic, arrays, tuples, records, inductive data types, bitvectors, strings, and equality over uninterpreted function symbols

• STP: https://github.com/stp/stp
 • Supported theories: bitvectors, arrays

• Boolector: https://github.com/Boolector/boolector
 • Supported theories: bitvectors, arrays, and uninterpreted functions

• ...
Further readings

• https://rise4fun.com/z3/tutorial
• https://www.cs.princeton.edu/~zkincaid/courses/fall18/readings/SAT Handbook-CDCL.pdf
• https://cse442-17f.github.io/Conflict-Driven-Clause-Learning/
• https://homes.cs.washington.edu/~emina/blog/2017-06-23-a-primer-on-sat.html
Thanks and stay safe!