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What are Large Language Models 

Tokens:
Map each word to a token ID
However, 
- Some words are too rare / 

misspelled
- Split these into common word 

parts and map these to IDs

A probabilistic model of a natural language (a series of tokens) 

“Many words don't map to one token: indivisible.”

Tokenization

[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 45]

https://platform.openai.com/tokenizer


What are Large Language Models 

p(a turtle swims in the ocean) = p(a) 
        p(turtle | a)
         p(swims  | a turtle)
         p(in     | a turtle swims)
         p(the   | a turtle swims in)
         p(ocean  | a turtle swims in the)

                   
0.01

p(a turtle swims in the ocean) > p(a dog swims in the ocean)

e.g. p(dog) > p(turtle)

Goal: Assign a probability to any sequence of tokens (how 
likely is this sequence of tokens from appearing together)

  0.05

Left-to-right 
language models

Wettig and Deshpande. An Overview of Large Language Models.

  0.002   0.00005

Vaswani et al. Attention Is All You Need



How do Large Language Models model 
languages (left-to-right) ?

≈ 10–100 
layers

https://jalammar.github.io/illustrated-gpt2/



Embedding layer

First to turn 
natural language 
sequences into 
computable token 
embeddings 

Position embedding 
applies additional 
context to 
different complex 
structures 

https://jalammar.github.io/illustrated-gpt2/



Decoder block: Attention Layers

Embedding/information of the next token 
depends on the previous tokens. We should 
attend to tokens which are more important

https://jalammar.github.io/illustrated-gpt2/



Decoder block: Feed-forward

Feed-forward layer to 
compute the next level 
embedding for token

Process is repeated 
multiple times across 
different decoder 
blocks to compute the 
final embedding vector 
each token



LLM output & training

https://jalammar.github.io/illustrated-gpt2/

Obtain the scores over the next token candidates by 
converting to probability. 

Training compares model probability with correct 
(groundtruth) probability and updates parameter weights

Repeat for billions of time for profit :)



Why is this language modeling useful?
1. Sample a token from ~ p(next token | previous tokens)
2. Append the token to the input
3. Run the new input through the transformer

Wettig and Deshpande. An Overview of Large Language Models.

Turns out, a lot of interesting tasks can be solved 
under this formulation. Is it the most efficient? No, 
but it is quite general!



1. Huge number of model parameters
2. Large amounts of unsupervised data for pre-training

They are large 

ChatGPT
175B?

GPT4
1.8T?

years

# 
pa

ra
me

te
rs

trillions of text tokens

wikipedia GitHub
online 
forum

https://hanlab.mit.edu/projects/efficientnlp_old/

Why is this language modeling useful?



Different types of language models

We saw previously the classic decoder-only transformer block

Decoder

if (arr.len > 

Decoder-only Models
(Left-to-Right Models)

max_length

Encoder

if (<MASK>.len > <MASK>) {

<MASK>:arr
<MASK>:max_length

Encoder-only Models
(Masked-Language Models)

Decoder
Encoder

<SPAN>:arr.len > max_length

if (<SPAN>) {

Encoder-Decoder Models



Decoder

if (arr.len > 

Decoder-only Models
(Left-to-Right Models)

max_length

Decoder-only (Left-to-Right) Models

Only attends to the tokens on the left 
through Casual Language Modeling 

Commonly used for test generation and 
predicting the next token

Popular decoder-only models: GPT-2/3, GLM, 
PaLM, GPT-Neo family, LLama 



Encoder-only (Masked-language) Models

Encoder

if (<MASK>.len > <MASK>) {

<MASK>:arr
<MASK>:max_length

Encoder-only Models
(Masked-Language Models)

Unlike decoder-only models, encoder-only 
models attend to all tokens 

Trained using Masked Language Modeling 
objective by masking out random tokens

Popular encoder-only models: BERT, 
RoBERTa, CodeBERT



Encoder-Decoder Models

Decoder
Encoder

<SPAN>:arr.len > max_length

if (<SPAN>) {

Encoder-Decoder Models

Similar to encoder-only ones, can also 
attend to all tokens 

Can be trained via different span-based 
objectives (e.g., Masked Span Prediction)

Popular encoder-decoder models: BART, T5, 
CodeT5, CodeT5+, AlphaCode



Using Large Language Models

LLM

def fibonacci(n):

if n == 1 or n == 0:
...

LLM

example task
example solution
target task

solution

LLMLLM

Domain-Specific
Dataset target task

solution

1) Zero-shot 2) Incontext learning 3) Fine-tuning

2.5) Prompting

LLM

target task
instructions

solution



Many tasks conform to next token prediction!

Zero-Shot usages

Sanh et al. Multitask Prompted Training Enables Zero-Shot Task Generalization



Is the above code buggy?  

Zero-Shot usages
Many tasks conform to next token prediction!

def sieve(max):
 primes = []
 for n in range(2, max):
 if any(n%p for p in primes):
 primes.append(n)
 return primes

Yes

Directly leverage 
LLMs to perform 
the task

󰞵 Prompt

💾 Code

Liu et al. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation



Few-shot/Incontext-learning

def sieve(max):
 primes = []
 for n in range(2, max):
 if any(n%p for p in primes):
 primes.append(n)
 return primes

LLMs may infer the 
task to be solved 
when given previous 
examples

Allow them to learn 
the desired output 
formats on-the-fly

# examples 
= #-shot

Is the above code buggy?  

... (example tasks) ...
Is the above code buggy? No

💾 Code

󰞵 Prompt



Prompting

def sieve(max):
 primes = []
 for n in range(2, max):
 if any(n%p for p in primes):
 primes.append(n)
 return primes

Please carefully examine the 
above code snippet and determine 
if it contains a bug or not.

Does it contain a bug? 

Examples by itself 
may not be enough 
to fully unlock the 
potential of LLMs

We can carefully 
craft specific 
prompts, via prompt 
engineering, to add 
additional 
instructions and 
elicit reasoning

Few-shot 
examples 
can also be 
included

Crafted 
Prompt

💾 Code

󰞵 Prompt



Fine-tuning

LLMLLM

Domain-Specific
Dataset target task

solution

Fine-tuning on domain specific 
dataset is similar to traditional 
Deep Learning models. Similarly 
LLMs can also learn the desired 
downstream task 

LLMLLM

Domain-Specific
Dataset target task

solution

Crafted Prompt
Crafted Prompt Furthermore, we can also combine 

prompts from previous 
prompt-engineering work to 
additionally gear the LLM towards 
the downstream task with prompts



Some recent emerging capability of LLMs
What is emerging? 
Dictionary definition: “a qualitative change that arises from quantitative 
changes”

In LLMs: “An ability is emergent if it is not present in smaller models 
but is present in larger models.”

Wei et al. Emergent abilities of large language models



How to unlock the emergence: Aligning 
LLM responses with humans preferences

RLHF

Instruction 
fine-tuning

Reward model 
training

Policy model 
trainingPretraining

Frame all tasks in the form of:
natural language instruction to 
natural language response mapping



How to unlock the emergence: Aligning 
LLM responses with humans preferences

Usually there is no 
single response 
that people prefer 
the best, only 
gradients

Aligns the model 
output with human 
responses (aka what 
people would 
prefer)



Small RLHF 
models

Large model 
with weaker 
techniques

How to unlock the emergence: Aligning 
LLM responses with humans preferences

Wei et al. Emergent abilities of large language models



How to unlock the emergence: Elicit more 
reasoning capability through prompting

Enable language models to do more-complicated tasks. Guide them with 
“meta-data” (i.e., reasoning process) with manually crafted prompts.

Zero-shot Chain of 
Thought prompting can be 
as simple as adding “Lets 
think step-by-step” to 
the original input

Wei et al. Chain-of-thought prompting elicits reasoning in large language models



Fine-tuned 
SOTA

Human

StrategyQA

How to unlock the emergence: Elicit more 
reasoning capability through prompting

GSM8K

Fine-tuned 
SOTA at 
the time

Big-Bench

Wei et al. Chain-of-thought prompting elicits reasoning in large language models



Code Version: Program of Thoughts
Multi-step reasoning seems to fall apart when there are many steps or 
many variables. We may offload some computation to trusted executions

Chen et al. Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks



LLM breakthroughs: especially for code

GitHub Copilot has been activated by more than one million 
developers and adopted by over 20,000 organizations. It has 
generated over three billion accepted lines of code, and is the 
world’s most widely adopted AI developer tool.

Liu et al. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation



LLM Limitations: Hallucinations

Numbers marked in 
red are wrong, 
ChatGPT imagines 
them.

For code, hallucinations can lead to:
- Uncompilable code
- Logical errors
- Malicious code

def sieve(max):
 primes = []
 for n in range(2, max):
 check_prime(

Bang et al. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity



LLM Limitations: Time-Stamped

The answer should have 
been Argentina, but it 
is not always trained 
on the most recent 
data.

For code, LLMs can be bounded by the knowledge 
learnt during training. Popular libraries and new 
languages are constantly updating, leading to 
incorrect results produced by LLMs

1Wettig and Deshpande. An Overview of Large Language Models.



Summary: Large Language Models
Languages Models using the transformer architecture by 
training on large amounts text in an unsupervised fashion

Test formulation allows LLMs to be used/general for a wide 
range of tasks 

Emergent abilities of LLMs can be further unlocked through 
various ways to elicit more reasoning in LLMs

Large Language Models for code/software engineering is 
additionally an exciting area to make huge impact!


