
Large Language Models
CS598LMZ Spring 24

Chunqiu Steven Xia

What are Large Language Models

Tokens:
Map each word to a token ID
However,
- Some words are too rare /

misspelled
- Split these into common word

parts and map these to IDs

A probabilistic model of a natural language (a series of tokens)

“Many words don't map to one token: indivisible.”

Tokenization

[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 45]

https://platform.openai.com/tokenizer

What are Large Language Models

p(a turtle swims in the ocean) = p(a)
 p(turtle | a)
 p(swims | a turtle)
 p(in | a turtle swims)
 p(the | a turtle swims in)
 p(ocean | a turtle swims in the)

0.01

p(a turtle swims in the ocean) > p(a dog swims in the ocean)

e.g. p(dog) > p(turtle)

Goal: Assign a probability to any sequence of tokens (how
likely is this sequence of tokens from appearing together)

 0.05

Left-to-right
language models

Wettig and Deshpande. An Overview of Large Language Models.

 0.002 0.00005

Vaswani et al. Attention Is All You Need

How do Large Language Models model
languages (left-to-right) ?

≈ 10–100
layers

https://jalammar.github.io/illustrated-gpt2/

Embedding layer

First to turn
natural language
sequences into
computable token
embeddings

Position embedding
applies additional
context to
different complex
structures

https://jalammar.github.io/illustrated-gpt2/

Decoder block: Attention Layers

Embedding/information of the next token
depends on the previous tokens. We should
attend to tokens which are more important

https://jalammar.github.io/illustrated-gpt2/

Decoder block: Feed-forward

Feed-forward layer to
compute the next level
embedding for token

Process is repeated
multiple times across
different decoder
blocks to compute the
final embedding vector
each token

LLM output & training

https://jalammar.github.io/illustrated-gpt2/

Obtain the scores over the next token candidates by
converting to probability.

Training compares model probability with correct
(groundtruth) probability and updates parameter weights

Repeat for billions of time for profit :)

Why is this language modeling useful?
1. Sample a token from ~ p(next token | previous tokens)
2. Append the token to the input
3. Run the new input through the transformer

Wettig and Deshpande. An Overview of Large Language Models.

Turns out, a lot of interesting tasks can be solved
under this formulation. Is it the most efficient? No,
but it is quite general!

1. Huge number of model parameters
2. Large amounts of unsupervised data for pre-training

They are large

ChatGPT
175B?

GPT4
1.8T?

years

pa

ra
me

te
rs

trillions of text tokens

wikipedia GitHub
online
forum

https://hanlab.mit.edu/projects/efficientnlp_old/

Why is this language modeling useful?

Different types of language models

We saw previously the classic decoder-only transformer block

Decoder

if (arr.len >

Decoder-only Models
(Left-to-Right Models)

max_length

Encoder

if (<MASK>.len > <MASK>) {

<MASK>:arr
<MASK>:max_length

Encoder-only Models
(Masked-Language Models)

Decoder
Encoder

:arr.len > max_length

if () {

Encoder-Decoder Models

Decoder

if (arr.len >

Decoder-only Models
(Left-to-Right Models)

max_length

Decoder-only (Left-to-Right) Models

Only attends to the tokens on the left
through Casual Language Modeling

Commonly used for test generation and
predicting the next token

Popular decoder-only models: GPT-2/3, GLM,
PaLM, GPT-Neo family, LLama

Encoder-only (Masked-language) Models

Encoder

if (<MASK>.len > <MASK>) {

<MASK>:arr
<MASK>:max_length

Encoder-only Models
(Masked-Language Models)

Unlike decoder-only models, encoder-only
models attend to all tokens

Trained using Masked Language Modeling
objective by masking out random tokens

Popular encoder-only models: BERT,
RoBERTa, CodeBERT

Encoder-Decoder Models

Decoder
Encoder

:arr.len > max_length

if () {

Encoder-Decoder Models

Similar to encoder-only ones, can also
attend to all tokens

Can be trained via different span-based
objectives (e.g., Masked Span Prediction)

Popular encoder-decoder models: BART, T5,
CodeT5, CodeT5+, AlphaCode

Using Large Language Models

LLM

def fibonacci(n):

if n == 1 or n == 0:
...

LLM

example task
example solution
target task

solution

LLMLLM

Domain-Specific
Dataset target task

solution

1) Zero-shot 2) Incontext learning 3) Fine-tuning

2.5) Prompting

LLM

target task
instructions

solution

Many tasks conform to next token prediction!

Zero-Shot usages

Sanh et al. Multitask Prompted Training Enables Zero-Shot Task Generalization

Is the above code buggy?

Zero-Shot usages
Many tasks conform to next token prediction!

def sieve(max):
 primes = []
 for n in range(2, max):
 if any(n%p for p in primes):
 primes.append(n)
 return primes

Yes

Directly leverage
LLMs to perform
the task

󰞵 Prompt

💾 Code

Liu et al. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation

Few-shot/Incontext-learning

def sieve(max):
 primes = []
 for n in range(2, max):
 if any(n%p for p in primes):
 primes.append(n)
 return primes

LLMs may infer the
task to be solved
when given previous
examples

Allow them to learn
the desired output
formats on-the-fly

examples
= #-shot

Is the above code buggy?

... (example tasks) ...
Is the above code buggy? No

💾 Code

󰞵 Prompt

Prompting

def sieve(max):
 primes = []
 for n in range(2, max):
 if any(n%p for p in primes):
 primes.append(n)
 return primes

Please carefully examine the
above code snippet and determine
if it contains a bug or not.

Does it contain a bug?

Examples by itself
may not be enough
to fully unlock the
potential of LLMs

We can carefully
craft specific
prompts, via prompt
engineering, to add
additional
instructions and
elicit reasoning

Few-shot
examples
can also be
included

Crafted
Prompt

💾 Code

󰞵 Prompt

Fine-tuning

LLMLLM

Domain-Specific
Dataset target task

solution

Fine-tuning on domain specific
dataset is similar to traditional
Deep Learning models. Similarly
LLMs can also learn the desired
downstream task

LLMLLM

Domain-Specific
Dataset target task

solution

Crafted Prompt
Crafted Prompt Furthermore, we can also combine

prompts from previous
prompt-engineering work to
additionally gear the LLM towards
the downstream task with prompts

Some recent emerging capability of LLMs
What is emerging?
Dictionary definition: “a qualitative change that arises from quantitative
changes”

In LLMs: “An ability is emergent if it is not present in smaller models
but is present in larger models.”

Wei et al. Emergent abilities of large language models

How to unlock the emergence: Aligning
LLM responses with humans preferences

RLHF

Instruction
fine-tuning

Reward model
training

Policy model
trainingPretraining

Frame all tasks in the form of:
natural language instruction to
natural language response mapping

How to unlock the emergence: Aligning
LLM responses with humans preferences

Usually there is no
single response
that people prefer
the best, only
gradients

Aligns the model
output with human
responses (aka what
people would
prefer)

Small RLHF
models

Large model
with weaker
techniques

How to unlock the emergence: Aligning
LLM responses with humans preferences

Wei et al. Emergent abilities of large language models

How to unlock the emergence: Elicit more
reasoning capability through prompting

Enable language models to do more-complicated tasks. Guide them with
“meta-data” (i.e., reasoning process) with manually crafted prompts.

Zero-shot Chain of
Thought prompting can be
as simple as adding “Lets
think step-by-step” to
the original input

Wei et al. Chain-of-thought prompting elicits reasoning in large language models

Fine-tuned
SOTA

Human

StrategyQA

How to unlock the emergence: Elicit more
reasoning capability through prompting

GSM8K

Fine-tuned
SOTA at
the time

Big-Bench

Wei et al. Chain-of-thought prompting elicits reasoning in large language models

Code Version: Program of Thoughts
Multi-step reasoning seems to fall apart when there are many steps or
many variables. We may offload some computation to trusted executions

Chen et al. Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks

LLM breakthroughs: especially for code

GitHub Copilot has been activated by more than one million
developers and adopted by over 20,000 organizations. It has
generated over three billion accepted lines of code, and is the
world’s most widely adopted AI developer tool.

Liu et al. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation

LLM Limitations: Hallucinations

Numbers marked in
red are wrong,
ChatGPT imagines
them.

For code, hallucinations can lead to:
- Uncompilable code
- Logical errors
- Malicious code

def sieve(max):
 primes = []
 for n in range(2, max):
 check_prime(

Bang et al. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity

LLM Limitations: Time-Stamped

The answer should have
been Argentina, but it
is not always trained
on the most recent
data.

For code, LLMs can be bounded by the knowledge
learnt during training. Popular libraries and new
languages are constantly updating, leading to
incorrect results produced by LLMs

1Wettig and Deshpande. An Overview of Large Language Models.

Summary: Large Language Models
Languages Models using the transformer architecture by
training on large amounts text in an unsupervised fashion

Test formulation allows LLMs to be used/general for a wide
range of tasks

Emergent abilities of LLMs can be further unlocked through
various ways to elicit more reasoning in LLMs

Large Language Models for code/software engineering is
additionally an exciting area to make huge impact!

