Software QA w/ Generative Al (CS598):
Intro

Spring 2024
Lingming Zhang

Course info

* Instructor: Lingming Zhang
 Homepage: http://lingming.cs.illinois.edu/
* Email: lingming@illinois.edu

e Class time: Tues/Thur 09:30AM - 10:45AM (Central Time)
 Class location: Zoom (for the first month)

 Office hours: Tues/Thur 08:30AM - 09:30AM (Central Time)

* TA: Chunqiu Steven Xia (chunqiu2 @illinois.edu)
e Office hours: Thur 03:00PM - 05:00PM (Central Time)

 Course resources:
* Webpage: https://lingming.cs.illinois.edu/courses/cs598Imz-s24.html
* Forum/notifications/submissions: https://campuswire.com/c/GC2CA245B/ ,

http://lingming.cs.illinois.edu/
mailto:lingming@illinois.edu
mailto:chunqiu2@illinois.edu
https://lingming.cs.illinois.edu/courses/cs598lmz-s24.html
https://campuswire.com/c/GC2CA245B/

About me

TEXAS

Li ng m i ng Zhang The University of Texas at Austin
52 B PhD in ECE, 2014
Associate Professor I

Department of Computer Science
Grainger College of Engineering
University of Illinois at Urbana-Champaign

Office: Thomas M. Siebel Center

Email: lingming@illinois.edu AP 2014-2020

* Work on Software Engineering and Programming Languages, as well as
their synergy with Machine Learning

* Enjoy building practical systems to help developers
* Automatically detect, diagnose, and fix software bugs
e Better understand, transform, and synthesize computer programs

About you

* Who are you (and where are you now)?
* What are you working on or interested in?

* Why are you taking this course?

* Anything else you’d like to share?
 E.g., what’s your story with software bugs?©

About the class

Textbook

Class organization

* Discuss 2-3 research papers each class
* They usually belong to the same topic
* The first few lectures will be about the basics and given by the instructor/TA

* You are required to
* Read at least the first paper of each class

\ALwi : for tl : haf h cl
* Participate in the classroom discussions

* | will randomly choose students to answer questions
* Lead the discussion for one paper

* Make your choice before 11:59pm Jan. 26t

e Submission on Campuswire: “Assignments”->“Presentation Preference Submission”

Goal of the course

* Get you exposed to real-world software quality assurance (QA) problems

* Get you interested in SE+Al research (if possible)
* If you are an PL/FM/SE student, you shall think about SE+Al now:)
* If you are an NLP/ML student getting bored of text/images, play with code!:)

* Get your feet wet in SE+Al research (through course project)

* Get you familiar with the typical research process (if you are junior PhD
students)

Grading

Homework assignments
Paper presentation
Class participation

Course project

20%
20%
10%
50%

*No exam!

Basic questions to ask on a research paper

Why is the targeted problem important?

What is the proposed technique and why does it work?
* Does the proposed technique have enough technical contribution?

How is the proposed technique evaluated?
* Are the evaluation benchmarks/subjects real-world systems?
* Are the used metrics reasonable?
* |s the experimental procedure replicable?
* |s it compared against state-of-the-art techniques?

How are the experimental results?
* Does it outperform prior work marginally or substantially?

What are the impacts of this work?
* Isit working on a rather specific problem or impacting a larger area?

What are the strengths/limitations for this work?

What are your suggestions/proposals to further advance this work?

Reading papers

* “How to Read a Research Paper”, by Michael Mitzenmacher
e http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

* “How to Read an Engineering Research Paper”, by William Griswold
* http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

* Advice compiled by Tao Xie:

* http://taoxie.cs.illinois.edu/advice.htm#review

11

http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html
http://taoxie.cs.illinois.edu/advice.htm

Presenting papers

* “How to give strong technical presentations” by Markus Puschel

e http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-
presentations.pdf

e Patrick Winston’s talk @ MIT:
e https://www.youtube.com/playlist?list=PL9F536001A3C605FC

e Jean Luc Doumont’s talk
e https://www.youtube.com/watch?v=meBXuTIPJQk

12

http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf
https://www.youtube.com/playlist?list=PL9F536001A3C605FC
https://www.youtube.com/watch?v=meBXuTIPJQk

The way to learn software engineering is to
go out there and do software engineering

Homework assignments

* Interact with T5/CodeT5 in a number of ways
* Training
* Finetuning
* Prompting
* Solve real-world software QA problems
* Program analysis

* Software testing
* Automated debugging

A

python

g GitHub

14

Course project: group

* The course project will be group-based
e 3-5 students in each group (recommended)

* Feel free to post in Campuswire chat room (#find-teammates) if you need a
teammate
e Also let me know if you need help to find a teammate

e Suggestions for finding your teammate
* Find someone with interest but complementary expertise!

Course project: topic

* A list of example topics on software QA w/ generative Al will be available
for you to choose from on Campuswire

* Improving code LLMs for specific QA tasks

* Fuzztesting
* Unit testing
* Program repair

 Evaluating existing code LLMs on new QA tasks/datasets
* QA for code produced by LLMs

* QA for code LLMs
* QA for the system stack supporting LLMs (such as DL libraries/compilers)

* You are encouraged to propose your own topics (subject to my approval)

16

Course project: topic selection

* |Is this topic an impactful problem?
* |s this topic related to my own research/background?
* Am | really passionate about this topic?

* More importantly, can | finish this on time and in good shape?

* Solve some challenging QA problems, or
* Outperform state of the art on real-world benchmarks, or

* Provide practical guidelines for future software QA

* Don’t know what to work on yet?

* Read the course project document and the papers in our schedule!
* Read more related papers (e.g., ICSE, FSE, ISSTA, ASE, NeurlPS, ACL, EMNLP...)

e Discuss with me!

Course project: deadlines

* Proposal (due 2/18)

* What is the targeted
problem

Why is it important
How you will do it
How you will evaluate it

What is your plan and
expected outcome

* Deliverables
e 1-page .txt proposal

* S5min presentation
(2/15)

* Midterm (due 04/02)

 What have you done

* Any challenges you
have faced

* Any changes you have
made since proposal

* Concrete plan for final
report

* Deliverables
* 3-page PDF report

* 10min presentation
(03/26, 03/28)

* Final (due 05/05)

 What is the targeted
problem

* Why is it important
* How you have done it

* How you have
evaluated it

* What is your outcome

* Deliverables
* 5-page PDF report

* 12min presentation
(04/23, 04/25)

The final report/presentation will be evaluated based on
real research paper standards (e.g., the ones you are going to read) =

Why this course?

e Software bugs are inevitable!
* Programming still mainly a manual process
» Software systems can be rather complicated
* Software systems can be evolving
* Interaction between software systems
* Dependence on hardware supports

0
0o

The first “bug”

“You were partly correct, | did find a

‘bug’ in my apparatus, but it was not
in the telephone proper...

Menfo ParXx Mch a7 7%
CO™ Ortfon Esqy
Dear 3ix
You werne pardPy corvect, I did fu;\d
o.-Gu.q" un My apparadus, Gul & was Mol im the tefepfRome
pPropex IF wan of the gemuns “QORQ‘ervav: Jhe imsect appears
fo fimd comdihions for Us exinfemce wn aff caff appanatas of

1efephones, Jothern defay was Hie sickwmess of A-clamis wifé.,
Qe o

LR s fp Y ey e)

The first computer “bug”

“First actual case of bug being found.”
Grace Hopper (1947)

Photo # NH 96566-KN (Color) First Computer “Bug”, 1947
vz

14] fe: 1!
0§ Oakam -"w {/-lm 7.037 sy 05
/000 ‘ s\»“q} "anM\ / 9.087 §YC 95 cowy
137w, (03 HP -me m J‘éﬂ Y.4/5 71,,037()
03y PRO> 2. 130¢r0YyiS
. Cow ok 2.0%062ew%
RIS -L w» 033 MWVJ xth oot
{m /’L “ w,om -l»vf'
3 o dum:
1794 JJ‘J’*" CO}IV\C T;Pj, (Slv\c c—‘\c\k)

qz@k%\‘?" ?u\f\s‘ F
\Mo'ﬂ)ln rt\qU\

f\ A QK*‘ . '. b ein A
AE6r Qldany) u:ﬁJ east bl 1{““1
s Lad fipm

Nowadays,
software is
everywhere!

AL \\\\\\\\‘\\

-
ST N
S% % SRR AL R ARY T R e
Ao N SN At S SNNNAARRY ARN
L RRARARNS, SR
UNAAASAARS
A5 NANNAN

N

LN SNSNSAAR L\ UNSNSRAR

22

So are software bugs...

@ spokesman.com M

News Sports Arts & Entertainment Weather

@he Washington Post @l)e NB\U ﬁﬂl’k Cimes
Airline Blames Bad Software

Democracy Dies in Darkness

THE SPOKESMAN-REVIEW

- | Neleieay in San Francisco Crash
British Airways computer Tesla sued by family
problem strands 20,000 of Apple engineer
HASRIReATE killed in Autopilot
crash

"Tesla’s Autopilot feature was defective and
caused Huang's death,” attorneys for Walter
Huang said.

:
©

v

)

*

2

.

i

| 24
-
o
)
-

-

@
F
]

.L.,..L e gew®
]

This Jan. 10, 2017 file photo, British Airways
planes are parked at Heathrow Airportin

LOSSES FROM SOFTWARE FAILURES (UsD) m) | RICENTIS
London. British Airways said Wednesday Aug. 7,
2019, it has canceled some dozens of flights

1715430778504

were hit by a computer glitCh. (Frank Augstein I ONETRILLIONSEVENHUNDREDFIFTEENBILLIONFOURHUNDREDTHIRTYMILLIONSEVENHUNDREDSEVENTY-EIGHTTHOUSANDFIVEHUNDREDFOUR
AP)

Software quality dassurance
Detect bugs!

N

Fix bugs!

N

'Google: https://bit.ly/49k08kd

2Facebook: https://bit.1ly/2CAPVN9 (Android only)
SMicrosoft: https://bit.ly/2HgjUpw

Localize bugs!

3%

* Build cycles per day:

e Google!: 800K
* Facebook?: 60K
* Microsoft3: 150K

Google ﬁ =

24

https://bit.ly/49kO8kd
https://bit.ly/2CAPvN9
https://bit.ly/2HgjUpw

Course topics (tentative)

Background and Basics Code LLMs
Intro Encoder-only Models
Program Analysis Encoder-Decoder Models
Software Testing Decoder-only Models
Automated Debugging Trained on Foundation Models
LLMs Instruction Tuning

Others
Code LLMs for Software QA Software QA for Code LLMs
Fuzz Testing Benchmarking
Unit Testing Code Correctness
Program Repair Code Security
Automated Debugging Model Security
Program Analysis System Reliability

Software Verification

This is tentative, let me know your thoughts!

Course topics (tentative)

Background and Basics Code LLMs
Intro Encoder-only Models
Program Analysis Encoder-Decoder Models
Software Testing Decoder-only Models
Automated Debugging Trained on Foundation Models
LLMs Instruction Tuning

Others
Code LLMs for Software QA Software QA for Code LLMs
Fuzz Testing Benchmarking
Unit Testing Code Correctness
Program Repair Code Security
Automated Debugging Model Security
Program Analysis System Reliability

Software Verification

Program analysis

Is it correct?

..._(/) Program * |s it robust?
Ve + —— * |s it safe?

R Analyzers * Is it optimizable?
q [)

Program

Program analyzers aim to statically analyze the behavior of
computer programs regarding certain properties

Software testing

Software testing aims to dynamically execute computer
programs with test inputs to find potential bugs

Input: #SH&&*H —

Program

* How to generate test inputs?

* Fuzz Testing
* Unit Testing

Output: 1

7

* How to tell if a test detected a bug?

* Differential Testing
 Metamorphic Testing

28

Automated debugging

Bug detected!

Input: #SH&&*H), (foteerglerdft

Program

* Fault localization/diagnosis
* Which lines are responsible for the
execution failure?

 Automated program repair
 How to automatically patch the system?

Fault Localization = Program Repair

29

parameters

Large Language Models (LLMSs)

https://hanlab.mit.edu/proj 1.8T \
ects/efficientnlp_old/ _
ChatGPT & /
GPT:3
I B8 Microsoft ¥ 70B
T-NLG
U 17B
& & ® NVIDIA '
Google OpenAl Wigle OpenAl Megatronl M-~
Transformer GPT BERT GPT-2 ~ ~ 838
0.05B 0.11B 0. 34B 1.6B"

wikipedia
online
forum

trillions of text tokens

GitHub

* How do LLMs perform for QA of real-world software systems?

e How does software QA work for recent LLMs?

30

Course topics (tentative)

Background and Basics Code LLMs
Intro Encoder-only Models
Program Analysis Encoder-Decoder Models
Software Testing Decoder-only Models
Automated Debugging Trained on Foundation Models
LLMs Instruction Tuning

Others
Code LLMs for Software QA Software QA for Code LLMs
Fuzz Testing Benchmarking
Unit Testing Code Correctness
Program Repair Code Security
Automated Debugging Model Security
Program Analysis System Reliability

Software Verification

Architectures

input = torch.6)

input = torch.<MASK>(3,6) Encider input = torch.
| X }
Encoder Decoder — Decoder
| | ‘]
<MASK>: zeros : zeros(3, — zeros
Encoder-only Encoder-Decoder Decoder-only

* Encoder-only: CodeBERT, GraphCodeBERT, ...
* Encoder-Decoder: CodeT5, CodeT5+, AlphaCode, ...
* Decoder-only: CodeGen, Phi-1, StarCoder, ...

Trained on foundation models

Model Foundation
Architecture Model

General
Corpora

* Faster training
* Better reasoning
* Better NL instruction following

Code
Corpora

AN .

1'/ ——

Code Llama

Code
Model

P
PalLM 2

33

Instruction tuning

Base Create a Python coding exercise Instruct

Model Model
“python

Given a list of integers, return the sum of all
the positive integers in the list.
def sum_positive_integers(nums):

return sum(num for num in nums if num > 0)

v

_—

* |[deally, the instruction data * How to generate code instruction
should be: data automatically?
* Diverse e Self-Instruct
* Realistic * Evol-Instruct
* Controllable * OSS-Instruct

® o [N]
[N} 34

Others

Code w/ Inputs
1 //Input: 19 -1
2
3 #include <stdio.h>
4 int main()
5 {
6 int A, N, T, B;
7 scanf("%d %d", &N, &A);
8 T =N x N;

9 B=T-A;
10 if (A > 0)

{

12 printf("s%d", B); // Branch-1
}

14 else
{

16 printf("%d",T); // Branch-2
}

18 return 0;

CodeX

Branch-1: Executed
Branch-2: Not Executed

UnixCoder

Branch-1: Not Executed
Branch-2: Not Executed

TRACED (Ours)

Branch-1: Not Executed
Branch-2: Executed

TRACED (dynamic information)

def fact
if n == 0:
return 1

return n

def fact
if n == 0:
return 1

return n

Original code

D)

Input

- 1)

##orial (n) : Target

else :

* fact ##torial (n

Vanilla TS Span Corruption

Original code

def factorial(n):
if :

else:
return

def fact ##orial (n) : Input
if [X]
else :

return

n == Target

return 1
n * fact ##orial (n - 1)

AST-Aware Subtree Corruption

AST-T5 (static information)

35

Course topics (tentative)

Background and Basics Code LLMs
Intro Encoder-only Models
Program Analysis Encoder-Decoder Models
Software Testing Decoder-only Models
Automated Debugging Trained on Foundation Models
LLMs Instruction Tuning

Others
Code LLMs for Software QA Software QA for Code LLMs
Fuzz Testing Benchmarking
Unit Testing Code Correctness
Program Repair Code Security
Automated Debugging Model Security
Program Analysis System Reliability

Software Verification

Code LLMs for software QA

@F=Y
\ W L oy |

\ A Bard

‘ Code Llama

Large Language Models

)

Source Code

Documentation

import ("fmt" "math/big")

0
operands := []float64{2.6, 2.5}
for mode := big.ToNearestEven; mode <=
big.ToPositivelnf; mode++ {
fmt.Printf(" %s", mode)
}

-

Example Usage

@Test
public void testAddObjectArrayBoolean() {
boolean[] newArray;

newArray = ArrayUtils.add((boolean[])null,

false);
assertTrue(Arrays.equals(new

boolean[]{false}, newArray));

}

Test Cases

(theory Ints

:funs ((NUMERAL Int)
(- Int Int)
(- Int Int Int :left-assoc)
(+ Int Int Int :left-assoc)
(* Int Int Int :left-assoc)

Specifications

* Fuzz testing
* Unit testing
* Program repair

* Program analysis

e Software verification

"« Automated debugging

37

Course topics (tentative)

Background and Basics Code LLMs
Intro Encoder-only Models
Program Analysis Encoder-Decoder Models
Software Testing Decoder-only Models
Automated Debugging Trained on Foundation Models
LLMs Instruction Tuning

Others
Code LLMs for Software QA Software QA for Code LLMs
Fuzz Testing Benchmarking
Unit Testing Code Correctness
Program Repair Code Security
Automated Debugging Model Security
Program Analysis System Reliability

Software Verification

Software QA for code LLMs

LLM-generated Code

C)GitHub /rprcHE =

Code LLMs

*¢Bard @ @ 2\;\; s

High-level Al Frameworks

eﬂo PyTorch1 TensorFlow m

Optimized Libraries

“: cuDNN

5
T L
g

Al Compilers & Optimizers

O nﬁi N ROV 5
@ OpenAl Triton Ll:

Hardware

_-
*
NVIDIA GPUs AMD GPUs CPUs Apple Silicon

* Benchmarking

* Code correctness
* Code security

* Model security

e System reliability

39

Thanks and stay safe!

