
Software QA w/ Generative AI (CS598):
Intro

Lingming Zhang
Spring 2024

Course info

• Instructor: Lingming Zhang
• Homepage: http://lingming.cs.illinois.edu/
• Email: lingming@illinois.edu

• Class time: Tues/Thur 09:30AM - 10:45AM (Central Time)
• Class location: Zoom (for the first month)

• Office hours: Tues/Thur 08:30AM - 09:30AM (Central Time)

• TA: Chunqiu Steven Xia (chunqiu2@illinois.edu)
• Office hours: Thur 03:00PM - 05:00PM (Central Time)

• Course resources:
• Webpage: https://lingming.cs.illinois.edu/courses/cs598lmz-s24.html
• Forum/notifications/submissions: https://campuswire.com/c/GC2CA245B/ 2

http://lingming.cs.illinois.edu/
mailto:lingming@illinois.edu
mailto:chunqiu2@illinois.edu
https://lingming.cs.illinois.edu/courses/cs598lmz-s24.html
https://campuswire.com/c/GC2CA245B/

About me

• Work on Software Engineering and Programming Languages, as well as
their synergy with Machine Learning

• Enjoy building practical systems to help developers
• Automatically detect, diagnose, and fix software bugs
• Better understand, transform, and synthesize computer programs

3

PhD in ECE, 2014

AP 2014-2020

About you

• Who are you (and where are you now)?

• What are you working on or interested in?

• Why are you taking this course?

• Anything else you’d like to share?
• E.g., what’s your story with software bugs?J

4

About the class

5

Textbook

6

Class organization

• Discuss 2-3 research papers each class
• They usually belong to the same topic
• The first few lectures will be about the basics and given by the instructor/TA

• You are required to
• Read at least the first paper of each class
• Write review for the primary paper before each class
• Participate in the classroom discussions

• I will randomly choose students to answer questions
• Lead the discussion for one paper

• Make your choice before 11:59pm Jan. 26th

• Submission on Campuswire: “Assignments”->“Presentation Preference Submission”

7

Goal of the course

• Get you exposed to real-world software quality assurance (QA) problems

• Get you interested in SE+AI research (if possible)
• If you are an PL/FM/SE student, you shall think about SE+AI now:)
• If you are an NLP/ML student getting bored of text/images, play with code!:)

• Get your feet wet in SE+AI research (through course project)

• Get you familiar with the typical research process (if you are junior PhD
students)

8

Grading

Homework assignments 20%

Paper presentation 20%

Class participation 10%

Course project 50%

9

•No exam!

Basic questions to ask on a research paper

• Why is the targeted problem important?
• What is the proposed technique and why does it work?

• Does the proposed technique have enough technical contribution?

• How is the proposed technique evaluated?
• Are the evaluation benchmarks/subjects real-world systems?
• Are the used metrics reasonable?
• Is the experimental procedure replicable?
• Is it compared against state-of-the-art techniques?

• How are the experimental results?
• Does it outperform prior work marginally or substantially?

• What are the impacts of this work?
• Is it working on a rather specific problem or impacting a larger area?

• What are the strengths/limitations for this work?
• What are your suggestions/proposals to further advance this work?

10

Reading papers

• “How to Read a Research Paper”, by Michael Mitzenmacher
• http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

• “How to Read an Engineering Research Paper”, by William Griswold
• http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

• Advice compiled by Tao Xie:
• http://taoxie.cs.illinois.edu/advice.htm#review

11

http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html
http://taoxie.cs.illinois.edu/advice.htm

Presenting papers

• “How to give strong technical presentations” by Markus Püschel
• http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-

presentations.pdf

• Patrick Winston’s talk @ MIT:
• https://www.youtube.com/playlist?list=PL9F536001A3C605FC

• Jean Luc Doumont’s talk
• https://www.youtube.com/watch?v=meBXuTIPJQk

12

http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf
https://www.youtube.com/playlist?list=PL9F536001A3C605FC
https://www.youtube.com/watch?v=meBXuTIPJQk

13

The way to learn software engineering is to
go out there and do software engineering

Homework assignments

• Interact with T5/CodeT5 in a number of ways
• Training
• Finetuning
• Prompting

• Solve real-world software QA problems
• Program analysis
• Software testing
• Automated debugging

14

Course project: group

• The course project will be group-based
• 3-5 students in each group (recommended)
• Feel free to post in Campuswire chat room (#find-teammates) if you need a

teammate
• Also let me know if you need help to find a teammate

• Suggestions for finding your teammate
• Find someone with common interest but complementary expertise!

15

Course project: topic

• A list of example topics on software QA w/ generative AI will be available
for you to choose from on Campuswire
• Improving code LLMs for specific QA tasks

• Fuzz testing
• Unit testing
• Program repair
• …

• Evaluating existing code LLMs on new QA tasks/datasets
• QA for code produced by LLMs
• QA for code LLMs
• QA for the system stack supporting LLMs (such as DL libraries/compilers)

• You are encouraged to propose your own topics (subject to my approval)
16

Course project: topic selection

• Is this topic an impactful problem?

• Is this topic related to my own research/background?

• Am I really passionate about this topic?

• More importantly, can I finish this on time and in good shape?
• Solve some challenging QA problems, or
• Outperform state of the art on real-world benchmarks, or
• Provide practical guidelines for future software QA

• Don’t know what to work on yet?
• Read the course project document and the papers in our schedule!
• Read more related papers (e.g., ICSE, FSE, ISSTA, ASE, NeurIPS, ACL, EMNLP…)
• Discuss with me!

17

Course project: deadlines

• Proposal (due 2/18)
• What is the targeted

problem
• Why is it important
• How you will do it
• How you will evaluate it
• What is your plan and

expected outcome

• Deliverables
• 1-page .txt proposal
• 5min presentation

(2/15)

18

• Midterm (due 04/02)
• What have you done
• Any challenges you

have faced
• Any changes you have

made since proposal
• Concrete plan for final

report

• Deliverables
• 3-page PDF report
• 10min presentation

(03/26, 03/28)

• Final (due 05/05)
• What is the targeted

problem
• Why is it important
• How you have done it
• How you have

evaluated it
• What is your outcome

• Deliverables
• 5-page PDF report
• 12min presentation

(04/23, 04/25)

The final report/presentation will be evaluated based on
real research paper standards (e.g., the ones you are going to read)

Why this course?

• Software bugs are inevitable!
• Programming still mainly a manual process
• Software systems can be rather complicated
• Software systems can be evolving
• Interaction between software systems
• Dependence on hardware supports
• …

19

The first “bug”

20

“You were partly correct, I did find a
‘bug’ in my apparatus, but it was not
in the telephone proper…

Thomas Edison (early 1800s)

The first computer “bug”

21

“First actual case of bug being found.”
Grace Hopper (1947)

Nowadays,
software is
everywhere!

22

So are software bugs...

23

Software quality assurance

• Build cycles per day:
• Google1: 800K
• Facebook2: 60K
• Microsoft3: 150K

24

Fix bugs!

Localize bugs!Detect bugs!

1Google: https://bit.ly/49kO8kd
2Facebook: https://bit.ly/2CAPvN9 (Android only)
3Microsoft: https://bit.ly/2HgjUpw

https://bit.ly/49kO8kd
https://bit.ly/2CAPvN9
https://bit.ly/2HgjUpw

Course topics (tentative)

Background and Basics
Intro
Program Analysis
Software Testing
Automated Debugging
LLMs

Code LLMs
Encoder-only Models
Encoder-Decoder Models
Decoder-only Models
Trained on Foundation Models
Instruction Tuning
Others

Code LLMs for Software QA
Fuzz Testing
Unit Testing
Program Repair
Automated Debugging
Program Analysis
Software Verification

Software QA for Code LLMs
Benchmarking
Code Correctness
Code Security
Model Security
System Reliability

25This is tentative, let me know your thoughts!

Course topics (tentative)

Background and Basics
Intro
Program Analysis
Software Testing
Automated Debugging
LLMs

Code LLMs
Encoder-only Models
Encoder-Decoder Models
Decoder-only Models
Trained on Foundation Models
Instruction Tuning
Others

Code LLMs for Software QA
Fuzz Testing
Unit Testing
Program Repair
Automated Debugging
Program Analysis
Software Verification

Software QA for Code LLMs
Benchmarking
Code Correctness
Code Security
Model Security
System Reliability

26

Program analysis

• Is it correct?
• Is it robust?
• Is it safe?
• Is it optimizable?
• …

27

Program
Analyzers+ =

Program

Program analyzers aim to statically analyze the behavior of
computer programs regarding certain properties

Software testing

28

Program

• How to generate test inputs?
• Fuzz Testing
• Unit Testing
• …

• How to tell if a test detected a bug?
• Differential Testing
• Metamorphic Testing
• …

Input: #$H&&*H Output: 1

Software testing aims to dynamically execute computer
programs with test inputs to find potential bugs

Automated debugging

29

Program

• Fault localization/diagnosis
• Which lines are responsible for the

execution failure?

• Automated program repair
• How to automatically patch the system?

Bug detected!

Fault Localization

0.86

0.04

0.17

Program Repair

Input: #$H&&*H

ChatGPT
175B

GPT4
1.8T

years

pa
ra
me
te
rs

trillions of text tokens

wikipedia
GitHub

online

forum

https://hanlab.mit.edu/proj
ects/efficientnlp_old/

Large Language Models (LLMs)

• How do LLMs perform for QA of real-world software systems?

• How does software QA work for recent LLMs?
30

Course topics (tentative)

Background and Basics
Intro
Program Analysis
Software Testing
Automated Debugging
LLMs

Code LLMs
Encoder-only Models
Encoder-Decoder Models
Decoder-only Models
Trained on Foundation Models
Instruction Tuning
Others

Code LLMs for Software QA
Fuzz Testing
Unit Testing
Program Repair
Automated Debugging
Program Analysis
Software Verification

Software QA for Code LLMs
Benchmarking
Code Correctness
Code Security
Model Security
System Reliability

31

Architectures

• Encoder-only: CodeBERT, GraphCodeBERT, …

• Encoder-Decoder: CodeT5, CodeT5+, AlphaCode, …

• Decoder-only: CodeGen, Phi-1, StarCoder, …

32

input = torch.<MASK>(3,6)

Encoder

<MASK>: zeros

input = torch.6)

Encoder

: zeros(3,

input = torch.

Decoder

zeros

Decoder

Encoder-only Encoder-Decoder Decoder-only

Trained on foundation models

• Faster training

• Better reasoning

• Better NL instruction following

• …
33

Model
Architecture

Foundation
Model

Code
Model

General
Corpora

Code
Corpora

Instruction tuning

• How to generate code instruction
data automatically?
• Self-Instruct
• Evol-Instruct
• OSS-Instruct
• …

34

Base
Model

Create a Python coding exercise

```python 
# Given a list of integers, return the sum of all 
the positive integers in the list. 
def sum_positive_integers(nums): 

return sum(num for num in nums if num > 0) 
…
```

Instruct
Model

• Ideally, the instruction data
should be:
• Diverse
• Realistic
• Controllable
• …

Others

35

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

def fact [X]
 if n == 0:
 return 1
 [Y]
 return n [Z] - 1)

def fact ##orial (n) :
 if [X] :
 [Y]
 else :
 return [Z]

[X] n == 0
[Y] return 1
[Z] n * fact ##orial (n - 1)

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

[X] ##orial (n) :
[Y] else :
[Z] * fact ##orial (n

Original code

Input

Target

Original code

Input

Target

Vanilla T5 Span Corruption AST-Aware Subtree Corruption

Figure 1: Comparison of AST-Aware Subtree Corruption and Vanilla T5 using a Python factorial
function. Both methods replace masked spans with sentinel tokens (special tokens added to the vo-
cabulary, shown as [X], [Y], and [Z] in the figure), with output sequences containing the original
masked tokens. Inputs and targets are shown in byte-pair encoding (BPE); for instance, “facto-
rial” is encoded into “fact” and “##orial”. Unlike Vanilla T5, which masks random spans without
considering code structure, our approach specifically targets spans aligned with AST subtrees, like
expressions and statements.

lightweight, multi-language parser called Tree-sitter1, our approach has broad applicability across
all syntactically well-defined programming languages. After we parse code into ASTs, we use a dy-
namic programming-based segmentation algorithm for AST-aware code segmentation to maintain
the structural integrity of the input code. Using our novel AST-Aware Span Corruption technique,
the model is pretrained to reconstruct various code structures, ranging from individual tokens to en-
tire function bodies. Together, our approach offers three key advantages: (1) enriched bidirectional
encoding for improved code understanding, (2) the ability to coherently generate code structures,
and (3) a unified, structure-aware pretraining framework that boosts performance across a variety of
code-related tasks, particularly in code transpilation.

In addition, other than our specialized AST-aware masking approach, AST-T5 introduces no archi-
tecture changes or additional heads, and our pretraining objective remains the same as Vanilla T5.
This compatibility enables seamless integration of our model as a drop-in replacement for any T5
variant.

In our experiments, AST-T5 consistently outperforms baselines in code generation, transpilation,
and understanding tasks. Through controlled experiments, we empirically demonstrate that these
advancements are attributed to our AST-aware pretraining techniques. Notably, AST-T5 not only
outperforms similar-sized models like CodeT5 and CodeT5+ across various benchmarks but also re-
mains competitive with, or occasionally even exceeds, the performance of much larger models using
the HumanEval dataset. Furthermore, the inherent AST-awareness of AST-T5 offers unique advan-
tages in structure-sensitive tasks, such as code-to-code transpilation and Clone Detection, highlight-
ing its effectiveness at capturing the structural nuances of code.

2 Related Work

Language Models for Code. Language models (LMs) extended their use from NLP to code un-
derstanding and generation. Encoder-only models generally excel in code understanding when fine-
tuned with classifiers (Feng et al., 2020), while decoder-only models are optimized for code gen-
eration through their autoregressive nature (Chen et al., 2021a; Fried et al., 2023; Nijkamp et al.,

1https://tree-sitter.github.io/tree-sitter/

2

TRACED: Execution-aware Pre-training for Source Code
Yangruibo Ding
Columbia University
New York, NY, USA

Ben Steenhoek
Iowa State University

Ames, IA, USA

Kexin Pei
Columbia University
New York, NY, USA

Gail Kaiser
Columbia University
New York, NY, USA

Wei Le
Iowa State University

Ames, IA, USA

Baishakhi Ray
Columbia University
New York, NY, USA

ABSTRACT
Most existing pre-trained language models for source code focus on
learning the static code text, typically augmented with static code
structures (abstract syntax tree, dependency graphs, etc.). How-
ever, program semantics will not be fully exposed before the real
execution. Without an understanding of the program execution,
statically pre-trained models fail to comprehensively capture the
dynamic code properties, such as the branch coverage and the run-
time variable values, and they are consequently less e�ective at
code understanding tasks, such as retrieving semantic clones and
detecting software vulnerabilities.

To close the gap between the static nature of language mod-
els and the dynamic characteristics of programs, we introduce
TRACED, an execution-aware pre-training strategy for source code.
Speci�cally, we pre-train code language models with a combination
of source code, executable inputs, and corresponding execution
traces. Our goal is to teach code models the complicated execution
logic during the pre-training, enabling the model to statically es-
timate the dynamic code properties without repeatedly executing
code during task-speci�c �ne-tuning.

To illustrate the e�ectiveness of our proposed approach, we
�ne-tune and evaluate TRACED on three downstream tasks: static
execution estimation, clone retrieval, and vulnerability detection.
The empirical results show that TRACED relatively improves the
statically pre-trained code models by 12.4% for complete execution
path prediction and by 25.2% for runtime variable value predictions.
TRACED also signi�cantly outperforms statically pre-trained mod-
els in clone retrieval and vulnerability detection across four public
benchmarks.

1 INTRODUCTION
Machine Learning (ML) for source code has enabled many soft-
ware engineering tasks, such as automated program repair [11, 21–
23], bug �nding [8, 54], and refactoring [7]. Recently, the com-
mon practice of training ML models for source code understand-
ing is based on pre-training a Transformer-based language model
on source code. These approaches treat source code programs
as static text [1, 6, 16, 49], sometimes augmented with program-
speci�c structures such as abstract syntax trees and dependency
graphs [10, 17, 18, 35], and adapt pre-training strategies for natural
language to learn program representations.

However, many source code understanding tasks require a more
comprehensive understanding of program behavior. For instance,
detecting semantic clones[32] involves determining if two pieces of
code behave similarly under similar inputs, even if their structures
are apparently di�erent. Likewise, detecting vulnerabilities often

requires developers to analyze whether a potentially problematic
location can be executed and what kinds of value �ows can expose
any vulnerability. While existing code models are primarily trained
to capture static code properties, they are not e�ective at reasoning
about program behavior. In fact, many of the deeper program se-
mantics only manifest when the code is executed. As a result, they
tend to underperform when it comes to tasks that require deeper
semantic understanding.

Figure 1: An motivating example from CodeNet’s coding challenge
No.3597 [41] reveals that statically pre-trained code languagemodels,
regardless of their size, could not reason about the branch coverage
given a speci�c input, while TRACED, enhanced with program exe-
cution features, correctly identify the execution path.

Motivating Examples. Figure 1 presents an example with sim-
ple execution logic to illustrate the failure of statically pre-trained
code models on the branch coverage prediction. We query three
pre-trained code models, CodeX [13] (code-davinci-002), Unix-
Coder [17], and TRACED (ours), to predict the branch coverage,
according to the given program inputs. For CodeX, we prompt the
model with carefully designed questions, similar to [36], to ask for
the branch coverage prediction in the zero-shot setting. Speci�-
cally, we augment the prompts by adding comments at the end
of lines 12 and 16: // Will this line be executed? Yes or

no?. To give more hints regarding the data �ow, we further add a
comment at the end of line 10: // A is -1, since it accepts

the second value of the input. Unfortunately, even if provided
with additional hints of the required data �ow for branch prediction,
CodeX still failed to predict the correct coverage labels, suggesting
it cannot interpret this simple execution.

Besides the zero-shot prompting, we also study whether �ne-
tuning pre-trained code models to predict execution can lead to

ar
X

iv
:2

30
6.

07
48

7v
1

 [c
s.S

E]
 1

3
Ju

n
20

23

TRACED (dynamic information) AST-T5 (static information)

Course topics (tentative)

Background and Basics
Intro
Program Analysis
Software Testing
Automated Debugging
LLMs

Code LLMs
Encoder-only Models
Encoder-Decoder Models
Decoder-only Models
Trained on Foundation Models
Instruction Tuning
Others

Code LLMs for Software QA
Fuzz Testing
Unit Testing
Program Repair
Automated Debugging
Program Analysis
Software Verification

Software QA for Code LLMs
Benchmarking
Code Correctness
Code Security
Model Security
System Reliability

36

37

Source Code

Documentation
Large Language Models

• Fuzz testing

• Unit testing

• Program repair

• Automated debugging

• Program analysis

• Software verification

• …

import ("fmt" "math/big")
func main() {

operands := []float64{2.6, 2.5}
for mode := big.ToNearestEven; mode <=

big.ToPositiveInf; mode++ {
fmt.Printf(" %s", mode)

}
}

(theory Ints

:funs ((NUMERAL Int)
(- Int Int)
(- Int Int Int :left-assoc)
(+ Int Int Int :left-assoc)
(* Int Int Int :left-assoc)

...

Example Usage

Specifications

@Test
public void testAddObjectArrayBoolean() {

boolean[] newArray;
newArray = ArrayUtils.add((boolean[])null,

false);
assertTrue(Arrays.equals(new

boolean[]{false}, newArray));
}

Test Cases

Code LLMs for software QA

Course topics (tentative)

Background and Basics
Intro
Program Analysis
Software Testing
Automated Debugging
LLMs

Code LLMs
Encoder-only Models
Encoder-Decoder Models
Decoder-only Models
Trained on Foundation Models
Instruction Tuning
Others

Code LLMs for Software QA
Fuzz Testing
Unit Testing
Program Repair
Automated Debugging
Program Analysis
Software Verification

Software QA for Code LLMs
Benchmarking
Code Correctness
Code Security
Model Security
System Reliability

38

LLM-generated Code

Software QA for code LLMs

39

Code LLMs

High-level AI Frameworks

Optimized Libraries

Hardware

AI Compilers & Optimizers

OpenAI Triton

NVIDIA GPUs Google TPUs CPUsAMD GPUs Apple Silicon

• Benchmarking

• Code correctness

• Code security

• Model security

• System reliability

• …

Thanks and stay safe!

41

