
Software QA w/ Generative AI (CS598):
Automated Debugging

Lingming Zhang
Spring 2024

This class

• Fault Localization: Visualization of test information to assist fault
localization
• ICSE 2002

• Program Repair: Practical Program Repair via Bytecode Mutation
• ISSTA 2019

2

What is fault localization?

3

int mid(int x, int y, int z) {
int m;
m = z;
if (y < z) {

if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)

m = y;
else if (x > z)

m = x; }
return m;

}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

What is fault localization?

• Fault Localization: the
process of automatically
narrowing or guiding the
search for faulty code to
help a developer debug
more quickly

4

int mid(int x, int y, int z) {
int m;
m = z;
if (y < z) {

if (x < y)
m = y;

else if (x < z)
m = y; //m=x;

} else {
if (x > y)

m = y;
else if (x > z)

m = x; }
return m;

}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

A representative technique: Tarantula
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 Susp.

int m;
m = z;
if(y< z){
if(x< y){
m = y;
else if(x<z){
m = y;
} else {
if (x>y)
m = y;
else if (x>z)
m = x; }
return m;

Pass Pass Pass Pass Pass Fail 5

• Uses dynamic Information:
• Statements executed by each test
• The pass/fail outcome of each test

• Performs statistical analysis:
• Statements mainly executed by failed tests

are more suspicious

A representative technique: Tarantula
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 Susp.

int m;
m = z;
if(y< z){
if(x< y){
m = y;
else if(x<z){
m = y;
} else {
if (x>y)
m = y;
else if (x>z)
m = x; }
return m;

Pass Pass Pass Pass Pass Fail 6

• Tarantula:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑠) =

𝑓𝑎𝑖𝑙 𝑠
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙

𝑓𝑎𝑖𝑙 𝑠
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙 +

𝑝𝑎𝑠𝑠 𝑠
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠

A representative technique: Tarantula
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 Susp.

int m; 0.5

m = z; 0.5

if(y< z){ 0.5

if(x< y){ 0.63

m = y; 0

else if(x<z){ 0.71

m = y; 0.83

} else { 0

if (x>y) 0

m = y; 0

else if (x>z) 0

m = x; } 0

return m; 0.5

Pass Pass Pass Pass Pass Fail 7

𝑆𝑢𝑠𝑝(𝑠1) =
1
1

1
1 +

5
5

𝑆𝑢𝑠𝑝(𝑠7) =
1
1

1
1 +

1
5

• Tarantula:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑠) =

𝑓𝑎𝑖𝑙 𝑠
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙

𝑓𝑎𝑖𝑙 𝑠
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙 +

𝑝𝑎𝑠𝑠 𝑠
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠

More formulae for fault localization

• Tarantula

• 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑠) =
!"#$ %

&'&"$!"#$
!"#$ %

&'&"$!"#$,
("%% %

&'&"$("%%

• SBI
• 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑠) = -./0(1)

-./0(1),2.11(1)

• Jaccard
• 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑠) = -./0(1)

343.0-./0,2.11(1)

• Ochiai
• 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑠) = -./0(1)

343.0-./0∗(2.11 1 ,-./0(1))
8

Various ML techniques have also been
proposed for fault localization:

DeepFL: Integrating Multiple Fault Diagnosis
Dimensions for Deep Fault Localization

(ISSTA’19)

This class

• Fault Localization: Visualization of test information to assist fault
localization
• ICSE 2002

• Program Repair: Practical Program Repair via Bytecode Mutation
• ISSTA 2019

9

Automated Program Repair

• Test inputs [Weimer et al.]
• Formal specifications [Wei et al.]

• Static analysis [van Tonder et al.]

10

public static int sum(int a, int b) {
return a-b; // should be a+b

}

Buggy project

FIX
public static int sum(int a, int b) {
- return a-b;
+ return a+b;
} Fixed project

Test inputs

@Test
public void test1() {

assertEquals(A.sum(1,2), 3);
}
...

How to validate the fixed code?

q Weimer et al., “Automatically finding patches using genetic programming”. ICSE’09
q Wei et al., “Automated fixing of programs with contracts”, ISSTA’10
q van Tonder et al., “Static automated program repair for heap properties”, ICSE’18

Test-Driven Automated Program Repair (APR)

• In academia, APR [Weimer et al.] has been
extensively studied for over a decade

11

0.86
0.00

0.17

Fault Localization
[Jones et al.]

Patch
Generation

Patch
Validation

Correct patchesPlausible patchesCandidate stmts

Approved

Manual
Inspection

• In industry, companies are also
eager to use APR …

0
10
20
30
40
50

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

7 7 6 9 12
19 22 24

39
47 49

Papers on APR

q Jones et al., “Visualization of Test Information to Assist Fault Localization”. ICSE’02
q Weimer et al., “Automatically finding patches using genetic programming”. ICSE’09

12.27.0: “We apologize to anyone who had problems with
the app. We trained a neural net to eliminate all bugs in the
app and it deleted everything. We had to roll everything
back. To be fair, we were 100% bug-free… briefly.”

Test-Driven Automated Program Repair (APR)

• In academia, APR [Weimer et al.] has been
extensively studied for over a decade

12

0.86
0.00

0.17

Fault Localization
[Jones et al.]

Patch
Generation

Patch
Validation

Correct patchesPlausible patchesCandidate stmts

Approved

Manual
Inspection

• In industry, companies are also
eager to use APR …

0
10
20
30
40
50

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

7 7 6 9 12
19 22 24

39
47

36# Papers on APR

q Jones et al., “Visualization of Test Information to Assist Fault Localization”. ICSE’02
q Weimer et al., “Automatically finding patches using genetic programming”. ICSE’09

CashCore, with over 1M
LOC, costs almost a year
for 50,000 patches!

Operating System

ClassLoaders

Loading

JVM

13

However, patch validation is costly

Java
Interpreter

Runtime
System

Patched
source code

Patched
bytecode

Compilation

JIT
Compiler

APR Tools Validating
1 patch

50,000
patches

SimFix [ISSTA’18] 10.4s 144.5h
SketchFix [ICSE’18] 32.0s 444.5h

JAID [ASE’17] 7.7s 107.0h
…

>250,000LOC
> 7,000 TestsClosure

• Traditional Java patch validation:
• Compilation
• Java Virtual Machine (JVM) loading
• Execution against all test inputs

Scaling APR to real-world systems

14

RSRepair, SpeciFix, …
2014

Nopol, HDRepair,
Prophet, …

2016

SimFix, CapGen,
SketchFix, …

2018
GenProg*, CASC, …

2012

2013
PAR, SemFix, AE, …

2015
Kali, SPR,

SearchRepair, …

2017
ACS, JAID, ELIXIR,
ssFix, JFix …

2011
JAFF, AutoFix-E2, …

AutoFix, MutFix, …
2010

2009
GenProg

2019
PraPR

(This work)

Potential side effects: dataset overfitting and/or scalability issues

Correct

Other

Patch search space

• Techniques to reduce patch search space:
• Code search: SimFix, ssFix, …
• Machine learning: ELIXIR, Prophet, …
• Constraint solving/synthesis: Nopol, ACS, …
• Fixing-pattern mining: CapGen, HDRepair, …
• ...

Source-level APR

Revisiting the APR problem after 10 years

15

Our insight: let the machines fix at their own level!
Machines fix at the source levelHumans fix at the source level

RSRepair, SpeciFix, …
2014

Nopol, HDRepair,
Prophet, …

2016

SimFix, CapGen,
SketchFix, …

2018
GenProg*, CASC, …

2012

2013
PAR, SemFix, AE, …

2015
Kali, SPR,

SearchRepair, …

2017
ACS, JAID, ELIXIR,
ssFix, JFix …

2011
JAFF, AutoFix-E2, …

AutoFix, MutFix, …
2010

2009
GenProg

2019
PraPR
(This talk)

Prior work: reducing
the number of patches

Our work: reducing the
time on each patch

Practical Program Repair via On-the-Fly
Bytecode Manipulation (PraPR)

Report

Fault
Localization

Patch
Generation

Patch
Validation

Manual
Inspection

JVM
Java Virtual Machine

…

16

Decompiler

0.86
0.04

0.17 Approved

Fault
Localization

Patch
Generation

Patch
Validation

Manual
Inspection

PraPR system design
• Patch search space
• Bytecode patching
• Handling all JVM instructions and data types

• On-the-fly patching
• Sharing JVM across patches

• Handling various class-loading mechanisms
• Handing modern JVM-based projects
• Multi-module
• DB, network, and file accesses

• …

17

PraPR patch search space

18

Closure-11 (Defects4J 1.2.0)

1303: private void visitGetProp(NodeTraversal t, Node n, Node parent) {
1308: Node property = n.getLastChild();
1309: Node objNode = n.getFirstChild();
1310: JSType childType = getJSType(objNode);
1312: if (childType.isDict()) {
1313: report(t, property, TypeValidator.ILLEGAL_PROPERTY_ACCESS, "'.'", "dict");
1314: } else if (n.getJSType() != null && parent.isAssign()) {
1315: return;
1316: } else if (validator.expectNotNullOrUndefined(t, n, childType,
1317: "No properties on this expression", getNativeType(OBJECT_TYPE))) {
1318: checkPropertyAccess(childType, property.getString(), t, n);
1319: }
1320: ensureTyped(t, n);
1321: }

Our insight: applying basic fixing
patterns exhaustively!

Prior work: applying selective
fixing patterns!

20+ patches for such a simple statement!

new Node(…)
new NumberNode(…)
n.getFirstChild()

...

Method Call Replacement (MR) n.getNext()

...

Node property =
n==null?null:n.getLastChild()

Method Call Guard (MG)

Variable Replacement (VR)

parent
n.getFirstChild()

n.getLastChild()

... null
n

Method Call Removal (MC) ...

PraPR patch search space

19

Closure-11 (Defects4J 1.2.0)

1303: private void visitGetProp(NodeTraversal t, Node n, Node parent) {
1308: Node property = n.getLastChild();
1309: Node objNode = n.getFirstChild();
1310: JSType childType = getJSType(objNode);
1312: if (childType.isDict()) {
1313: report(t, property, TypeValidator.ILLEGAL_PROPERTY_ACCESS, "'.'", "dict");
1314: } else if (n.getJSType() != null && parent.isAssign()) {
1315: return;
1316: } else if (validator.expectNotNullOrUndefined(t, n, childType,
1317: "No properties on this expression", getNativeType(OBJECT_TYPE))) {
1318: checkPropertyAccess(childType, property.getString(), t, n);
1319: }
1320: ensureTyped(t, n);
1321: }

Over 250,000 statements for Closure-11

46,926 patches
3,744 candidate statements for patching

1314: - } else if (n.getJSType() != null && parent.isAssign()) {
1315: - return;

Developer Patch

1314: - } else if (n.getJSType() != null && parent.isAssign()) {
1315: + } else if (null != null && parent.isAssign()) {

PraPR Patch (via MC)

31
0

31
0

35
0

40
0

22
11

25
24

Patching Frequency (tot.=219)

No prior APR work can fix this bug!

JVM Stack Frame

Constant Pool Reference

PraPR bytecode patching
Method Guard Pattern (Line 1316, Closure-11)

- validator.expectNotNullOrUndefined(t, n, childType,“No…”,getNativeType(…))

…

Local Variable
Array (LVA)

Operand Stack

+ validator==null? true: validator.expectNotNullOrUndefined(t, n,childType,“No…”,getNativeType(…))

20Our insight: directly manipulate JVM operand stack and LVA for fast bytecode fixing

PraPR bytecode patching
Method Guard Pattern (Line 1316, Closure-11)

- validator.expectNotNullOrUndefined(t, n, childType,“No…”,getNativeType(…))

Original unpatched version

getNat…

“No…”

childType

n

t

validator

…

Local Variable
Array (LVA)

result

…INVOKE…

vali
dat

or!
=nu

ll

Operand Stack

+ validator==null? true: validator.expectNotNullOrUndefined(t, n,childType,“No…”,getNativeType(…))

INVOKE…
validator==null

21

PraPR bytecode patching
Method Guard Pattern (Line 1316, Closure-11)

- validator.expectNotNullOrUndefined(t, n, childType,“No…”,getNativeType(…))

Patched version via manipulating JVM operand stack and LVA

getNat…

“No…”

childType

n

t

validator

…

Local Variable
Array (LVA)

validator

…

validator

validator

…
validator

…

getNat…

“No…”

childType

n

t

validator

…

…
1

…

result

…

Can be replaced with
other accessible and
compatible values,
variables, or fields

ASTORE
… DUP

IFNONNULL

vali
dato

r!=n
ull

!IFNONNULL
validator==null

INVOKE…

POP ICONST_1

Operand Stack

+ validator==null? true: validator.expectNotNullOrUndefined(t, n,childType,“No…”,getNativeType(…))

22

23

• Starting a JVM for each patch is costly [Lion et al.]
• Load/link/initialize all used bytecode class files

• 140,000,000+ class loadings for Closure-11
• Deploy used bundles/services

• AliPay projects

• Our insight: share JVM across patches on-the-fly
• Minimized loading: only reload patched class(es)
• Faster execution: share across patches:

• JVM profiling information
• Already JIT-optimized code

q Lion et al., “Don’t Get Caught In the Cold, Warm-up Your JVM”, OSDI’16

Compilation JVM Loading Execution

Original patch-validation time

Bytecode patching

On-the-fly
bytecode patching

10X to >100X speedup!

Why on-the-fly bytecode patching?

On-the-fly bytecode patching

Operating System

Compilation
Bytecode (in multiple .class files)

…

…

Patch Generation

Patches

Source code

24

ClassLoaders HotSwap
Agent

…

ClassLoaders HotSwap
Agent

…

JVM JVMJVM
ClassLoaders HotSwap

Agent

Patch Validation

Patch DB

Socket

HotSwap+
JavaAgent

PraPR system
• A one-click APR tool publicly available on
• Supports full set of JVM instructions and data types

• Plugin supports for modern build systems

• Applicable to popular testing frameworks

• Applicable to other popular JVM languages

25

Shaping Program Repair Space with Existing Patches and
Similar Code∗

Jiajun Jiang
Key Laboratory of High Con!dence

Software Technologies, MoE
Peking University
Beijing, China

jiajun.jiang@pku.edu.cn

Yingfei Xiong
Key Laboratory of High Con!dence

Software Technologies, MoE
Peking University
Beijing, China

xiongyf@pku.edu.cn

Hongyu Zhang
School of Electrical Engineering and

Computing
The University of Newcastle
Callaghan NSW, Australia

hongyu.zhang@newcastle.edu.au

Qing Gao
National Engineering Research
Center for Software Engineering

Peking University
Beijing, China

gaoqing@pku.edu.cn

Xiangqun Chen
Key Laboratory of High Con!dence

Software Technologies, MoE
Peking University
Beijing, China

cherry@sei.pku.edu.cn

ABSTRACT
Automated program repair (APR) has great potential to reduce bug-
!xing e"ort and many approaches have been proposed in recent
years. APRs are often treated as a search problem where the search
space consists of all the possible patches and the goal is to identify
the correct patch in the space. Many techniques take a data-driven
approach and analyze data sources such as existing patches and
similar source code to help identify the correct patch. However,
while existing patches and similar code provide complementary
information, existing techniques analyze only a single source and
cannot be easily extended to analyze both.

In this paper, we propose a novel automatic program repair
approach that utilizes both existing patches and similar code. Our
approach mines an abstract search space from existing patches and
obtains a concrete search space by di"erencing with similar code
snippets. Then we search within the intersection of the two search
spaces. We have implemented our approach as a tool called SimFix ,
and evaluated it on the Defects4J benchmark. Our tool successfully
!xed 34 bugs. To our best knowledge, this is the largest number
of bugs !xed by a single technology on the Defects4J benchmark.
Furthermore, as far as we know, 13 bugs !xed by our approach
have never been !xed by the current approaches.

∗This work is supported by the National Key Research and Development Program
under Grant No. 2016YFB1000105, National Natural Science Foundation of China
under Grant No. 61672045, 61332010, UON Faculty Strategic Pilot and SEEC Research
Incentive grants, Beijing Natural Science Foundation under Grant No. 4182024, the
China Postdoctoral Science Foundation under Grant No. 2017M620524. Yingfei Xiong
is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213871

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;

KEYWORDS
Automated program repair, code di"erencing, code adaptation

ACM Reference Format:
Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar
Code. In Proceedings of 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’18).ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3213846.3213871

1 INTRODUCTION
Automated program repair (APR) aims at reducing bug-!xing e"ort
by automatically generating patches that satisfy a speci!cation,
which is a step forward to software automation [42]. In recent
years, many automated program repair techniques have been pro-
posed [12, 15, 23, 33, 37, 41, 46, 60, 61, 66, 69]. A typical APR ap-
proach takes a faulty program and a set of test cases as input (where
the program fails at least one test case), and produces a patch to
repair the fault (where the patched program at least passes all the
tests).

APR is often treated as a search program where the space con-
sists of all possible patches and the goal is to identify the correct
patch from the space. The problem is challenging because the space
is usually huge, and contains a lot of plausible (patches that pass
all the tests) but incorrect patches [36]. Test cases cannot distin-
guish between correct and plausible but incorrect patches. An APR
approach not only needs to locate the correct patch from a huge
space, but also needs to avoid the plausible but incorrect patches.

To solve this problem, many APR techniques take a data-driven
approach to estimate the likelihood of patches and con!ne/priori-
tize the search space so that the patches that are more likely to be
correct are tried !rst. One of the commonly-used data sources is
existing patches. Analyzing the existing patches gives us the (po-
tentially conditional) distribution of bug-!xing modi!cations, thus

298

https://github.com/prapr/prapr

mvn org.mudebug:prapr-plugin:2.0.2:prapr

https://github.com/prapr/prapr

Modern JVM languages:

• No.1 preferred language for Android at Google I/O 2019
• Over 50% Android developers are using Kotlin

26

No prior APR work for Kotlin

PraPR opens the doors for:
• Fast APR without patch compilation and system reloading
• Avoiding the scalability issue of prior APR

• Freestanding APR without aggressive patch pruning
• Avoiding the dataset-overfitting issue of prior APR

• Universal APR for
• Code with/without source information
• Hundreds of JVM languages!

27

Resets the starting point, baseline, and scope for future APR

Benchmark projects

• Defects4J (1.2.0): the most widely used APR benchmark suite
• The first APR study on Defects4J (1.4.0)
• The first APR study for Kotlin (on DefeXts)

28

Benchmarks Language # of Bugs Code Size (LOC)
Defects4J (1.2.0)
[Just et al.]

395 60K -- 260K

Defects4J (1.4.0)
[Gay et al.]

612 30K -- 260K

DefeXts
[Benton et al.]

225 248 -- 170K

q Just et al., “Defects4J: a database of existing faults to enable controlled testing studies for Java programs”, ISSTA’14 Demo
q Gay et al., “Defect4J V1.4.0: https://github.com/Greg4cr/defects4j/tree/additional-faults-1.4”, 2019
q Benton et al., “Defexts: A Curated Dataset of Reproducible Real-World Bugs for Modern JVM Languages”. ICSE’19 Demo

Total Lines of
Code: >50M

State-of-the-art APR tools for comparison

29

Technical Basis APR Tools
Code Search SimFix [ISSTA’18], ssFix [ASE’17]
Sketching SketchFix [ICSE’18]
Pattern Mining CapGen [ICSE’18]
Meta-program JAID [ASE’17]
Synthesis/Constraint Solving NOPOL [TSE’16], ACS [ICSE’17]
Machine Learning ELIXIR [ASE’17]
Genetic Programming xPAR [ICSE’13], jGenProg [ICSE’09, ICSE’12]
Pattern-based HDRepair [SANER’16], jkali [ISSTA’15], jMut [ICST’10]

PraPR effectiveness (Defects4J 1.2.0)

30

• Fixing more bugs
• Fixing 43 bugs, 27% more than the most effective SimFix [Jiang et al.]
• Fixing 10 bugs not fixed by any existing APR

• Fixing bugs over 10X faster!

APR Tools Validating
1 patch

50,000
patches

SimFix [ISSTA’18] 10.4s 144.5h
SketchFix [ICSE’18] 32.0s 444.5h

JAID [ASE’17] 7.7s 107.0h
…

PraPR (this work) 0.22s 3.0h

>250,000LOC
> 7,000 Tests

Closure

q Jiang et al., “Shaping Program Repair Space with Existing Patches and Similar Code”, ISSTA’18

PraPR effectiveness (Defects4J 1.2.0)

31

• Fixing more bugs
• Fixing 43 bugs, 27% more than the most effective SimFix [Jiang et al.]
• Fixing 10 bugs not fixed by any existing APR

• Fixing bugs over 10X faster!

APR Tools Validating
1 patch

50,000
patches

SimFix [ISSTA’18] 10.4s 144.5h
SketchFix [ICSE’18] 32.0s 444.5h

JAID [ASE’17] 7.7s 107.0h
…

PraPR (this work) 0.22s 3.0h

>250,000LOC
> 7,000 Tests

Closure

q Jiang et al., “Shaping Program Repair Space with Existing Patches and Similar Code”, ISSTA’18

PraPR effectiveness (Defects4J 1.4.0 and DefeXts)

• Fixing 62% more bugs than state-of-the-art APR on Defects4J 1.4.0!
• Avoiding the dataset overfitting issue

• Fixing 12% studied Kotlin bugs from DefeXts
• The first successful Kotlin APR report

32

jenjin: a multimodule Kotlin game engine with 22,261LoC

set(value) {
field = value

- this::class.declaredMemberProperties.forEach {
+ this::class.memberProperties.forEach {

…

https://github.com/lgwillmore/jenjin/commit/984f7567c83df2778b3d7887380839b757008340
19:
20:
22:
22:
23:

Fixed in 1min (exploring 1057 patches)!

https://github.com/lgwillmore/jenjin/commit/984f7567c83df2778b3d7887380839b757008340

Resources

• Tarantula: Visualization of test information to assist fault localization
(ICSE’02)
• Paper: https://faculty.cc.gatech.edu/~john.stasko/papers/icse02.pdf

• PraPR: PraPR: Practical Program Repair via Bytecode Mutation (ISSTA'19)
• Paper: http://lingming.cs.illinois.edu/publications/issta2019a.pdf
• Tool: https://github.com/prapr/prapr

• Want to know more about automated debugging?
• https://www.computer.org/csdl/journal/ts/2016/08/07390282/13rRUwh80Dh
• https://www.comp.nus.edu.sg/~abhik/pdf/cacm19.pdf

33

https://faculty.cc.gatech.edu/~john.stasko/papers/icse02.pdf
http://lingming.cs.illinois.edu/publications/issta2019a.pdf
https://github.com/prapr/prapr
https://www.comp.nus.edu.sg/~abhik/pdf/cacm19.pdf
https://www.comp.nus.edu.sg/~abhik/pdf/cacm19.pdf

Thanks and stay safe!

34

