
Fast and Precise On-the-fly Patch Validation for All
Lingchao Chen

Department of Computer Science
The University of Texas at Dallas

lxc170330@utdallas.edu

Yicheng Ouyang
Department of Computer Science
The University of Texas at Dallas

yicheng.ouyang@utdallas.edu

Lingming Zhang
Department of Computer Science

University of Illinois at Urbana-Champaign
lingming@illinois.edu

Abstract—Generate-and-validate (G&V) automated program
repair (APR) techniques have been extensively studied during
the past decade. Meanwhile, such techniques can be extremely
time-consuming due to the manipulation of program code to
fabricate a large number of patches and also the repeated test
executions on patches to identify potential fixes. PraPR, a recent
G&V APR technique, reduces such costs by modifying program
code directly at the level of compiled JVM bytecode with on-
the-fly patch validation, which directly allows multiple bytecode
patches to be tested within the same JVM process. However,
PraPR is limited due to its unique bytecode-repair design, and is
basically unsound/imprecise as it assumes that patch executions
do not change global JVM state and affect later patch executions
on the same JVM process. In this paper, we propose a unified
patch validation framework, named UniAPR, to perform the
first empirical study of on-the-fly patch validation for state-of-
the-art source-code-level APR techniques widely studied in the
literature; furthermore, UniAPR addresses the imprecise patch
validation issue by resetting the JVM global state via runtime
bytecode transformation. We have implemented UniAPR as a
publicly available fully automated Maven Plugin. Our study
demonstrates for the first time that on-the-fly patch validation
can often speed up state-of-the-art source-code-level APR by over
an order of magnitude, enabling all existing APR techniques
to explore a larger search space to fix more bugs in the near
future. Furthermore, our study shows the first empirical evidence
that vanilla on-the-fly patch validation can be imprecise/unsound,
while UniAPR with JVM reset is able to mitigate such issues with
negligible overhead.

I. INTRODUCTION

Software bugs are inevitable in modern software systems,
costing trillions of dollars in financial loss and affecting
billions of people [5]. Meanwhile, software debugging can
be extremely challenging and costly, consuming over half of
the software development time and resources [44]. Therefore,
a large body of research efforts have been dedicated to
automated debugging techniques [49], [36], [12]. Among the
existing debugging techniques, Automated Program Repair
[14] (APR) techniques hold the promise of reducing debug-
ging effort by suggesting likely patches for buggy programs
with minimal human intervention, and have been extensively
studied in the recent decade. Please refer to the recent surveys
on APR for more details [36], [12].

Generate-and-validate (G&V) APR refers to a practical
category of APR techniques that attempt to fix the bugs by first
generating a pool of patches and then validating the patches
via certain rules and/or checks [12]. A patch is said to be
plausible if it passes all the checks. Ideally, we would apply
formal verification [40] techniques to guarantee correctness of

generated patches. However, in practice, formal specifications
are often unavailable for real-world projects, thus making for-
mal verification infeasible. In contrast, testing is the prevalent,
economic methodology of getting more confidence about the
quality of software [1]. Therefore, the vast majority of recent
G&V APR techniques leverage developer tests as the criteria
for checking correctness of the generated patches [12], i.e.,
test-based G&V APR.

Two main costs are associated with such test-based G&V
APR techniques: (1) the cost of manipulating program code
to fabricate/generate patches based on certain transformation
rules; (2) repeated executions of all the developer tests to
identify plausible patches for the bugs under fixing. Since the
search space for APR is infinite and it is impossible to triage
the elements of this search space due to theoretical limits, test-
based G&V APR techniques usually lack clear guidance and
often act in a rather brute-force fashion: they usually generate a
huge pool of patches to be validated and the larger the program
the larger the set of patches to be generated and validated.
This suggests that the speed of patch generation and validation
plays a key role in scalability of the APR techniques, which
is one of the most important challenges in designing prac-
tical APR techniques [8]. Therefore, apart from introducing
new and/or more effective transformation rules, some APR
techniques have been proposed to mitigate the aforementioned
costs. For example, JAID [6] uses mutation schema to fabricate
meta-programs that bundle multiple patches in a single source
file, while SketchFix [15] uses sketches [23] to achieve a
similar effect. However, such techniques mainly aim to speed
up the patch generation time, while patch validation time
has been shown to be dominant during APR [35]. Most
recently, PraPR [13] aims to reduce both patch generation
and validation time by modifying program code directly at
the bytecode level with on-the-fly patch validation, which
directly allows multiple bytecode-level patches to be tested
within the same JVM process. However, bytecode-level APR
is not flexible (e.g., large-scope changes can be extremely hard
to implement at the bytecode level) and fails to fix many bugs
that can be fixed at the source-code level [13]; furthermore,
PraPR requires decompilation (which may be imprecise or
even fail) to decompile the bytecode-level patches for manual
inspection. In fact, all other popular general-purpose G&V
APR techniques fix at the source code level.

In this paper, we propose a unified test-based patch val-
idation framework, named UniAPR, to empirically study the

impact of on-the-fly patch validation for state-of-the-art source-
code-level APR techniques. While existing source-code-level
APR usually restarts a new JVM process for each patch, our
on-the-fly patch validation aims to use a single JVM process
for patch validation, as much as possible, and leverages
JVM’s dynamic class redefinition feature (a.k.a. the HotSwap
mechanism and Java Agent technology [7]) to only reload
the patched bytecode classes on-the-fly for each patch. In
this way, UniAPR not only avoids reloading (also including
linking and initializing) all used classes for each patch (i.e.,
only reloading the patched bytecode files), but also can avoid
the unnecessary JVM warm-up time (e.g., the accumulated
JVM profiling information across patches enables more and
more code to be JIT-optimized and the already JIT-optimized
code can also be shared across patches).

UniAPR has been implemented as a fully automated
Maven [11] plugin (available at [47]), to which almost all
existing state-of-the-art Java APR tools can be attached in the
form of patch generation add-ons. We have constructed add-
ons for representative APR tools from different APR families.
Specifically, we have constructed add-ons for CapGen [48],
SimFix [17], and ACS [50] that are modern representatives of
template-/pattern-based [9], [21], heuristic-based [2], [22], and
constraint-based [51], [39] techniques. Our empirical study
shows for the first time that on-the-fly patch validation can
often speed up state-of-the-art APR systems by over an order
of magnitude, enabling all existing APR techniques to explore
a larger search space to fix more bugs in the near future.

Furthermore, our study (Section V-A2) shows the first
empirical evidence that when sharing JVM across multiple
patches, the global JVM state may be polluted by earlier patch
executions, making later patch execution results unreliable.
For example, some patches may modify some static fields,
which are used by some later patches sharing the same JVM.
Therefore, we further propose the first solution to address
such imprecision problem by isolating patch executions via
resetting JVM states after each patch execution using runtime
bytecode transformation. Our experimental results show that
our UniAPR with JVM reset is able to the avoid impreci-
sion/unsoundness of vanilla on-the-fly patch validation with
negligible overhead.

We envision a future wherein all existing APR tools (like
SimFix [17], CapGen [48], and ACS [50]) and major APR
frameworks (like ASTOR [33] and Repairnator [38]) are
leveraging this framework for patch validation. In this way,
researchers will only need to focus on devising more effective
algorithms for better exploring the patch search space, rather
than spending time on developing their own components for
patch validation, as we can have a unified, generic, and much
faster framework for all. In summary, this paper makes the
following contributions:

� Framework. We introduce the first unified on-the-fly
patch validation framework, UniAPR, to empirically
study the impact of on-the-fly patch validation for state-
of-the-art source-code-level APR techniques.

� Technique. We show the first empirical evidence that on-
the-fly patch validation can be imprecise/unsound, and
introduce a new technique to reset the JVM state right
after each patch execution to address such issue.

� Implementation. We have implemented on-the-fly patch
validation based on the JVM HotSwap mechanism and
Java Agent technology [7], and implemented the JVM-
reset technique based on the ASM bytecode manipulation
framework [41]; the overall UniAPR tool has been imple-
mented as a practical Maven plugin [47], and can accept
different APR techniques as patch generation add-ons.

� Empirical Study. We conduct a large-scale study of the
effectiveness of UniAPR on its interaction with state-of-
the-art APR systems from three different APR families,
demonstrating that UniAPR can often speed up state-of-
the-art APR by over an order of magnitude (without vali-
dation imprecision/unsoundness). Furthermore, the study
results also indicate that UniAPR can serve as a unified
platform to naturally support hybrid APR to directly
combine the strengths of different APR tools.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss the current status of auto-
mated program repair (Section II-A); then, we introduce Java
Agent and HotSwap, on which UniAPR is built (Section II-B).

A. Automatic Program Repair

Automatic program repair (APR) aims to suggest likely
patches for buggy programs to reduce the manual effort during
debugging. The widely studied generate-and-validate (G&V)
techniques attempt to fix bugs by first generating a pool of
patches and then validating the patches via certain rules and/or
checks [22], [39], [48], [13], [17], [33], [30], [29]. Generated
patches that can pass all the tests/checks are called plausible
patches. However, not all plausible patches are the patches
that the developers want. Therefore, these plausible patches
are further manually checked by the developers to find the
final correct patches (i.e., the patches semantically equivalent
to developer patches). G&V APR techniques [22], [39], [48],
[13], [17], [33], [31], [16] have been extensively studied in
recent years, since it can substantially reduce developer efforts
in bug fixing. According to a recent work [27], researchers
have designed various APR techniques based on heuristics
[28], [22], [17], constraint solving [51], [10], [39], [34], and
pre-defined templates [20], [13], [26]. Besides automated bug
fixing, researchers have also proposed Unified Debugging [32],
[4] to leverage various off-the-shelf APR techniques to help
with manual bug fixing. In this way, the application scope of
APR techniques has been extended to all possible bugs, not
only the bugs that can be automatically fixed.

Meanwhile, despite the spectacular progress in designing
and applying new APR techniques, very few techniques have
attempted to reduce the time cost for APR, especially the patch
validation time which dominates repair process. For example,
JAID [6] uses patch schema to fabricate meta-programs that
bundle several patches in a single source file, while SketchFix

[15] uses sketches [23] to achieve a similar effect. Although
they can potentially help with patch generation and compila-
tion, they still require validating each patch in a separte JVM,
and have been shown to be rather costly during patch valida-
tion [13]. More recently, PraPR [13] uses direct bytecode-level
mutation and HotSwap to generate and validate patches on-
the-fly, thereby bypassing expensive operations such as AST
manipulation/compilation on the patch generation side as well
as process creation and JVM warm-up on the patch validation
side. This makes PraPR substantially faster than state-of-the-
art APR (including JAID and SketchFix). However, PraPR
is limited to only the bugs that can be fixed via bytecode
manipulation, and can also return imprecise patch validation
results due to potential JVM pollution.

B. Java Agent and HotSwap

A Java Agent [7] is a compiled Java program (in the form
of a JAR file) that runs alongside of the JVM in order to
intercept applications running on the JVM and modify their
bytecode. Java Agent utilizes the instrumentation API [7]
provided by Java Development Kit (JDK) to modify existing
bytecode that is loaded in the JVM. In general, developers
can both (1) statically load a Java Agent using -javaagent
parameter at JVM startup, and (2) dynamically load a Java
Agent into an existing running JVM using the Java Attach
API. For example, to load it statically, the manifest of
the JAR file containing Java Agent must contain a field
Premain-Class to specify the name of the class defining
premain method. Such a class is usually referred to as an
Agent class. The Agent class is loaded before any class in
the application class is loaded and the premain method
is called before the main method of the application class is
invoked. The premain method usually has the following
signature: public static void premain(String
agentArgs, Instrumentation inst). The second
parameter is an object of type Instrumentation created
by the JVM that allows the Java Agent to analyze or
modify the classes loaded by the JVM (or those that are
already loaded) before executing them. Specifically, the
redefineClasses method of Instrumentation,
given a class definition (which is essentially a class name
paired with its “new” bytecode content), even enables
dynamically updating the definition of the specified class,
i.e., directly replacing certain bytecode file(s) with the new
one(s) during JVM runtime. This is typically denoted as the
JVM HotSwap mechanism. It is worth mentioning that almost
all modern implementations of JVM (especially, so-called
HotSpot JVMs) have these features implemented in them.

By obtaining Instrumentation object, we have a pow-
erful tool using which we can implement a HotSwap Agent.
As the name suggests, HotSwap Agent is a Java Agent and is
intended to be executed alongside the patch validation process
to dynamically reload patched bytecode file(s) for each patch.
In order to test a generated patch during APR, we can pass
the patched bytecode file(s) of the patch to the agent, which
swaps it with the original bytecode file(s) of the corresponding

…

❷ Incremental
compilation

❼ Source
retrieval

Bytecode patches

Original bytecode files

…

Buggy
project

ClassLoaders HotSwap Agent

JVM

Patch DB

❻
So
cke

t

APR ToolsAPR ToolsAPR Tools

…

Source-code patches

By
te
co
de

-le
ve
lA

PR

❸ Compilation
❶ Source-level APR

❹ Loading
❺ Patch

executions

Fig. 1: UniAPR workflow

class(es). Then, we can continue to run tests which result in
executing the patched class(es), i.e., validating the correspond-
ing patch. Note that subsequent requests to HotSwap Agent for
later patch executions on the same JVM are always preceded
by replacing previously patched class(es) with its original
version. In this way, we can validate all patches (no matter
generated by source-code/bytecode APR) on-the-fly sharing
the same JVM for much faster patch validation.

III. APPROACH

Figure 1 depicts an the overall flow of our UniAPR
framework. According to the figure, given a buggy project,
UniAPR first leverages any of the existing APR tools (in-
tegrated as UniAPR add-ons) to generate source-code level
patches (marked with ¶). Then, UniAPR performs incremental
compilation to compile the patched source file(s) by each patch
into bytecode file(s) (marked with •). Note that, UniAPR is
a unified framework and can also directly take the bytecode
patches generated by the PraPR [13] (and future) bytecode
APR technique (marked with the dashed line directly connect-
ing APR tools into bytecode patches). In this way, UniAPR
has a pool of bytecode patches for patch validation. Also note
that besides constructed before patch validation, the patch
pool can also be continuously generated during the patch-
validation process1; in either way, UniAPR’s reduction on
patch-validation time is also not affected.

During the actual patch validation, UniAPR first compiles
the entire buggy project into bytecode files (i.e., .class
files), and then loads all the bytecode files into the JVM
through JVM class loaders (marked with ‚ and „ in the
figure). Note that these two steps are exactly the same as
executing the original tests for the buggy project. Since all
the bytecode files for the original project are loaded within
the JVM, when validating each patch, UniAPR only reloads
the patched bytecode file(s) by that particular patch via the
Java Agent technology and HotSpot mechanism, marked with
” (as the other unpatched bytecode files are already within

1If patches are continuously generated, the patch-validation component
needs to obtain the live stream of patch information from the running patch-
generation component (e.g., via lightweight socket connections).

the JVM). Then, the test driver can be triggered to execute
the tests to validate against the patch without restarting a
new JVM. After all tests are done for this patch execution,
UniAPR will replace the patched bytecode file(s) with the
original one(s) to revert to the original version. Furthermore,
UniAPR also resets the global JVM states to prepare a clean
JVM environment for the next patch execution (marked with
the short dashed lines). The same process is repeated for each
patch. Finally, the patch validation results will be stored into
the patch execution database via socket connections (marked
with »). Note that for any plausible patch that can pass all the
tests, UniAPR will directly retrieve the original source-level
patch for manual inspection (marked with …) in case the patch
was generated by source-level APR.

We have already constructed add-ons for three different
APR tools representing three different families of APR tech-
niques. These add-ons include CapGen [48] (representing
pattern/template-based APR techniques), SimFix [17] (repre-
senting heuristic-based techniques), and ACS [50] (represent-
ing constraint-based techniques). Of course, users of UniAPR
can also easily build new patch generation add-ons for other
APR tools. For existing APR tools, this can be easily done
by modifying their source code so that the tools abandon
validation of patches after generating/compiling them.

Next, we will talk about our detailed design for fast patch
validation via on-the-fly patching (Section III-A) as well as
precise patch validation via JVM reset (Section III-B).

A. Fast Patch Validation via On-the-fly Patching

Algorithm 1 is a simplified description of the steps that
vanilla UniAPR (without JVM-reset) takes in order to validate
candidate patches on-the-fly. The algorithm takes as inputs the
original buggy program P , its test suite T , and the set of
candidate patches P generated by any APR technique2. The
output is a map, R, that maps each patch into its corresponding
execution result. The overall UniAPR algorithm is rather
simple. UniAPR first initializes all patch execution results as
unknown (Line 2). Then, UniAPR gets into the loop body and
obtains the set of patches still with unknown execution results
(Line 4). If there is no such patches, the algorithm simply
returns since all the patches have been validated. Otherwise, it
means this is the first iteration or the earlier JVM process gets
terminated abnormally (e.g., due to timeout or JVM crash). In
either case, UniAPR will create a new JVM process (Line 7)
to evaluate the remaining patches (Line 8).

We next talk about the detailed validate function, which
takes the remaining patches, the original test suite, and a new
JVM as input. For each remaining patch P 0, the function
first obtains the patched class name(s) Cpatched and patched
bytecode file(s) Fpatched within P 0 (Lines 11 and 12). Then,
the function leverages our HotSwap Agent to replace the
bytecode file(s) under the same class name(s) as Cpatched

with the patched bytecode file(s) Fpatched; it also stores the

2Note that here we assume that P is available before patch validation for the
ease of presentation, but our overall approach is general and can also easily
handle the case where P is continuously constructed during patch validation.

Algorithm 1: Vanilla on-the-fly patch validation
Input: Original buggy program P , test suite T , and set of candidate patches P
Output: Validation status

R : P! fPLAUSIBLE, NON� PLAUSIBLE, ERRORg
1 begin
2 R P� fUNKNOWNg ; // initialize result function
3 while True do
4 Pleft fP′ j P′ 2 P ^R(P′) = UNKNOWNg// get all

the left patches not yet validated
5 if Pleft = ; then
6 return R // return if no left patches

7 JVM createJVMProcess()// create a new JVM
8 validate(Pleft, T ,JVM)) // validate the left

patches on the new JVM

9 function validate(Pleft, T ,JVM):
10 for P′ in Pleft do
11 Cpatched patchedClassNames(P′)
12 Fpatched patchedBytecodeFiles(P′)

// Swap in the patched bytecode files
13 Forig HotSwapAgent.swap(JVM, Cpatched,Fpatched)
14 for t in T do
15 try:
16 if run(JVM, t) = FAILING then
17 status NON� PLAUSIBLE
18 else
19 status PLAUSIBLE

20 catch TimeOutException, MemoryError:
21 status ERROR

22 R R[fP′ ! statusg
23 if status = NON-PLAUSIBLE then
24 break // continue with the next patch

when current one is falsified

25 if status = ERROR then
26 return // restart a new JVM when this

current one timed out or crashed

// Swap back the original bytecode files
27 HotSwapAgent.swap(JVM, Cpatched,Forig)

replaced bytecode file(s) as Forig to recover it later (Line 13).
Note that our implementation will explicitly load the corre-
sponding class(es) to patch (e.g., via Class.forName())
if they are not yet available before swapping. In this way,
the function can now execute the tests within this JVM to
validate the current patch since the patched bytecode file(s) has
already been loaded (Lines 14-26). If the execution for a test
finishes normally, its status will be marked as Plausible or
Non-Plausible (Lines 16-19); otherwise, the status will be
marked as Error, e.g., due to timeout or JVM crash (Lines
20-21). Then, P 0’s status will be updated in R (Line 22).
If the current status is Non-Plausible, the function will
abort the remaining test executions for the current patch since
it has been falsified, and move on to the next patch (Line
24); if the current status is Error, the function will return to
the main algorithm (Line 26), which will restart the JVM.
When the validation for the current patch finishes without
the Error status, the function will also recover the patched
bytecode file(s) into the original one(s) to facilitate the next
patch validation (Line 27).

B. Precise Patch Validation via JVM Reset

1) Limitations for vanilla on-the-fly patch validation: The
vanilla on-the-fly patch validation presented in Section III-A
works for most patches of most buggy projects. The basic
process can be illustrated via Figure 2. In the figure, each

Example challenge: monitor/reset JVM

P1 P2 P3 P4 …

write:
C.f=3;

Objs
w
rit
e

re
ad

Objs

w
rit
e

re
ad read:

assertEquals(C.f,1)

public class C{
static int f;
static Object o;
<clinit>(){
f=1;
o=new Object();

}
}

Fig. 2: Imprecision under vanilla UniAPR

// org.joda.time.TestYearMonthDay_Constructors.java
public class TestYearMonthDay_Constructors extends TestCase

{
private static final DateTimeZone PARIS = DateTimeZone.

forID("Europe/Paris");
private static final DateTimeZone LONDON = DateTimeZone.

forID("Europe/London");
private static final Chronology GREGORIAN_PARIS =

GregorianChronology.getInstance(PARIS);
...

Fig. 3: Static field dependency

patch (e.g., from P1 to P4) gets executed sequentially on
the same JVM. It would be okay if every patch accesses and
modifies the objects created by itself, e.g., P1 and P2 will not
affect each other and the vanilla on-the-fly patch validation
results for P1 and P2 will be the same as the ground-truth
patch validation results. However, it will be problematic if one
patch writes to some global space (e.g., static fields) and later
on some other patch(es) reads from that global space. In this
way, earlier patch executions will affect later patch executions,
and we call such global space pollution sites. To illustrate, in
Figure 2, P3 write to some static field C.f, which is later on
accessed by P4. Due to the existence of such pollution site,
the execution results for P4 will no longer be precise, e.g., its
assertion will now fail since C.f is no longer 1, although it
may be a correct patch.

2) Technical challenges: We observe that accesses to static
class fields are the main reason leading to imprecise on-the-fly
patch validation. Ideally, we only need to reset the values for
the static fields that may serve as pollution sites right after each
patch execution. In this way, we can always have a clean JVM
state to perform patch execution without restarting the JVM
for each patch. However, it turns out to be rather challenging:

First, we cannot simply reset the static fields that can
serve as pollution sites. The reason is that some static fields
are final and cannot be reset directly. Furthermore, static
fields may also be data-dependent on each other; thus, we
have to carefully maintain their original ordering, since oth-
erwise the program semantics may be changed. For example,
shown in Figure 3, final field GREGORIAN_PARIS is data-
dependent on another final field, PARIS, under the same
class within project Joda-Time [18] from the widely studied
Defects4J dataset [19]. The easiest way to keep such ordering
and reset final fields is to simply re-invoke the original class
initializer. However, according to the JVM specification, only

// org.joda.time.TestDateTime_Basics.java
public class TestDateTime_Basics extends TestCase {

private static final ISOChronology ISO_UTC =
ISOChronology.getInstanceUTC();

...
// org.joda.time.chrono.ISOChronology.java
public final class ISOChronology extends AssembledChronology

{
private static final ISOChronology[] cFastCache;
static {

cFastCache = new ISOChronology[FAST_CACHE_SIZE];
INSTANCE_UTC = new ISOChronology(GregorianChronology.

getInstanceUTC());
cCache.put(DateTimeZone.UTC, INSTANCE_UTC);

}
...

Fig. 4: Static initializer dependency

JVM can invoke such static class initializers.
Second, simply invoking the class initializers for all classes

with pollution sites may not work. For example, a naive way to
reset the pollution sites is to simply trace the classes with pol-
lution sites executed during each patch execution; then, we can
simply force JVM to invoke all their class initializers after each
patch execution. However, it can bring side effects because the
class initializers may also depend on each other. For example,
shown in Figure 4, within Joda-Time, the static initializer of
class TestDateTime_Basics depends on the static ini-
tializer of ISOChronology. If TestDateTime_Basics
is reinitialized earlier than ISOChronology, then field
ISO_UTC will no longer be matched with the newest
ISOChronology state. Therefore, we have to reinitialize all
such classes following their original ordering as if they had
been executed on a new JVM.

Based on the above analysis, we basically have two choices
to implement such system: (1) customizing the underlying
JVM implementation, and (2) simulating the JVM customiza-
tions at the application level. Although it would be easier to
directly customize the underlying JVM implementation, the
system implementation will not be applicable for other stock
JVM implementations. Therefore, we choose to simulate the
JVM customizations at the application level.

3) JVM reset via bytecode transformation: We now present
our detailed approach for resetting JVM at the the application
level. Inspired by prior work on speeding up traditional regres-
sion testing [3], we perform runtime bytecode transformation
to simulate JVM class initializations for patch execution
isolation for the first time. The overall approach is illustrated in
Figure 5. We next present the detailed three phases as follows.
Static Pollution Analysis. Before all the patch executions,
our approach performs lightweight static analysis to iden-
tify all the pollution sites within the bytecode files of all
classes for the project under repair, including all the ap-
plication code and 3rd-party library code. Note that we
do not have to analyze the JDK library code since JDK
usually provides public APIs to reset the pollution sites
within the JDK, e.g., System.setProperties(null)
can be used to reset any prior system properties and
System.setSecurityManager(null) can be lever-
aged to reset prior security manager. The analysis basically

P1 P2 P3 P4 …

public class C {
static int f;
static Object o;
<clinit>(){
f=1;
o=new Object();

}
}

Runtime Bytecode Transformation

Static Pollution Analysis

public void resetJVM(){
for(Class c :statusMap.keySet())
statusMap.put(c, false);

resetJDKSystemProperties();
…

}

Dynamic State Reset

public static boolean check(Class c){
if(!statusMap.get(c)){

statusMap.put(c, true);
return false;

}
return true;

}

public class C {
static int f;
static Object o;
<clinit>(){
uniapr_clinit()

}
public static void uniapr_clinit(){
synchronized(C.class){
if(!UniAPR.check(C.class)){
f=1;
o=new Object();

}
}

}
}

Fig. 5: On-the-fly patch validation via JVM reset

returns all classes with non-final static fields or final
static fields with non-primitive types (their actual object
states in the heap can be changed although their actual
references cannot be changed), since the states for all such
static fields can be changed across patches. Shown in Figure 5,
the blue block denotes our static analysis, and class C is
identified since it has static fields f and o that can be mutated.

C1 T is a class and an instance of T is created
C2 T is a class and a static method declared by T is invoked.
C3 A static field declared by T is assigned
C4 A static field declared by T is used and the field is not a constant variable
C5 T is a top level class, and an assert statement lexically nested in T is executed

TABLE I: Class initialization conditions

Runtime Bytecode Transformation. According to Java Lan-
guage Specification (JSL) [42], static class initializers get
invoked when any of the five conditions shown in Table I gets
satisfied. Therefore, the ideal way to reinitialize the classes
with pollution sites is to simply follow the JSL design. To
this end, we perform runtime bytecode transformation to add
class initializations right before any instance that falls in to the
five conditions shown in Table I. Note that our implementation
also handles the non-conventional Reflection-based accesses to
such potential pollution sites. Since JVM does not allow class
initialization at the application level, following prior work on
speeding up traditional regression testing [3], we rename the
original class initializers (i.e., <clinit>()) to be invoked
into another customizable name (say uniapr_clinit()).
Meanwhile, we still keep the original <clinit>() initializ-
ers since JVM needs that for the initial invocation; however,
now <clinit>() initializers do not need to have any content
except an invocation to the new uniapr_clinit(). Note
that we also remove potential final modifiers for pollution
sites during bytecode transformation to enable reinitializations
of final non-primitive static fields. Since this is done at the
bytecode level after compilation, the original compiler will
still ensure that such final fields cannot be changed during
the actual compilation phase.

Now, we will be able to reinitialize classes via invoking the
corresponding uniapr_clinit() methods. However, JVM
only initializes the same class once within the same JVM,
while now uniapr_clinit() will be executed for each
instance satisfying the five conditions in Table I. Therefore, we
need to add the dynamic check to ensure that each class only
gets (re)initialized once for each patch execution. Shown in

Figure 5, the orange blocks denote different patch executions.
During each patch execution, the classes with pollution sites
will be transformed at runtime. For example, class C will be
transformed into the code block connected with the P3 patch
execution in Figure 5; the yellow line in the transformed code
denotes the dynamic check to ensure that C is only initialized
once for each patch. The pseudo code for the dynamic check
is shown in the top-right of the figure: the check maintains
a ConcurrentHashMap for the classes with pollution sites
and their status (true means the corresponding class has been
reinitialized). The entire initialization is also synchronized
based on the corresponding Class object to handle concur-
rent accesses to class initializers; in fact, JVM also leverages
a similar mechanism to avoid class reinitializations due to
concurrency (despite implementing that at a different level).
(Note that this simplified mechanism is just for illustration
purpose; our actual implementation manipulates arrays with
optimizations for faster and safe tracking/check.) In this way,
when the first request for initializing class C arrives, all the
other requests will be blocked. If the class has not been
initialized, then only the current access will get the return
value of false to reinitialize C, while all other other requests
will get the true value and skip the static class initialization.
Furthermore, the static class initializers get invoked following
the same order as if they were invoked in a new JVM.
Dynamic State Reset. After each patch execution, our
approach will reset the state for the classes within the
status ConcurrentHashMap. In this way, during the
next patch execution, all the used classes within the
ConcurrentHashMap will be reinitialized (following the
check in Figure 5). Note that besides the application and
3rd-party classes, the JDK classes themselves may also have
pollution sites. Luckily, JDK provides such common APIs
to reset such pollution sites without the actual bytecode
transformation. In this way, our implementation also invokes
such APIs to reset potential JDK pollution sites. Please also
note that our system provides a public interface for the users
to customize the reset content for different projects under
repair. For example, some projects may require preparing
specific external resources for each patch execution, which
can be easily added to our public interface. In Figure 5, the
green strips denote the dynamic state reset, and the example
reset code after P3’s execution simply resets the status for
all classes within the status map as false and also resets
potential JDK pollution sites within classes.

IV. EXPERIMENTAL SETUP

A. Research Questions

To thoroughly evaluate our UniAPR framework, in this
study, we aim to investigate the following research questions:

� RQ1: How does vanilla on-the-fly patch validation per-
form for automated program repair?

� RQ2: How does on-the-fly patch validation with jvm-reset
perform for automated program repair?

Sub. Name #Bugs #Tests LoC
Chart JFreeChart 26 2,205 96K
Time Joda-Time 27 4,130 28K
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Closure Google Closure compiler 133 7,927 90K
Total 357 20,109 321K

TABLE II: Defects4J V1.0.0 statistics

For both RQs, we study both the effectiveness of UniAPR
in reducing the patch validation cost, and the precision of
UniAPR in producing precise patch validation results.

B. Benchmarks

We choose the Defects4J (V1.0.0) benchmark suite [19],
since it contains hundreds of real-world bugs from real-world
systems, and has become the most widely studied dataset for
program repair [13], [10], [6], [17], [48] or even software
debugging in general [24], [25], [4]. Table II presents the
statistics for the Defects4J dataset. Column “Sub.” presents the
project IDs within Defects4J, while Column “Name” presents
the actual project names. Column “#Bugs” presents the num-
ber of bugs collected from real-world software development
for each project, while Columns “#Tests” and “LoC” present
the number of tests (i.e., JUnit test methods) and the lines of
code for the HEAD buggy version of each project.

C. Studied Repair Tools

Being a well-developed field, APR offers us a cornucopia
of choices to select from. According to a recent study [27],
there are 31 APR tools targeting Java programs considering
two popular sources of information to identify Java APR tools:
the community-led program-repair.org website and the
living review of APR by Monperrus [37]. 17 of those Java
APR tools are found to be publicly available and applicable to
the widely used Defects4J benchmark suite (without additional
manually collected information, e.g., potential bug locations)
as of July 2019. Note that all such tools are source-level
APR, since the only bytecode-level APR tool PraPR was
only available after July 2019. Table III presents all such
existing Java-based APR tools, which can be categorized
into three main categories according to prior work [27]:
heuristic-based [22], [17], [28], constraint-based [51], [10],
and template-based [26], [48] repair techniques. In this work,
we aims to speed up all existing source-level APR techniques
via on-the-fly patch validation. Therefore, we select one rep-
resentative APR tool from each of the three categories for
our evaluation to demonstrate the general applicability of our
UniAPR framework. All the three considered APR tools, i.e.,
ACS [50], SimFix [17], and CapGen [48] are highlighted in
bold font in the table. For each of the selected tools, we
evaluate them on all the bugs that have been reported as fixed
(with correct patches) by their original papers to evaluate: (1)
UniAPR effectiveness, i.e., how much speedup UniAPR can
achieve, and (2) UniAPR precision, i.e., whether the patch
validation results are consistent with and without UniAPR.

Tool Category Tools
Constraint-based ACS, Nopol, Cardumen, Dynamoth

Heuristic-based SimFix, Arja, GenProg-A, jGenProg, jKali,
jMutRepair, Kali-A, RSRepair-A

Template-based CapGen, TBar, AVATAR, FixMiner, kPar

TABLE III: Available Java APR tools for Defects4J [27]

D. Implementation

UniAPR has been implemented as a publicly available fully
automated Maven plugin [47], on which one can easily inte-
grate any patch generation add-ons. The current implementa-
tion involves over 10K lines of Java code. As a Maven plugin,
the users simply need to add the necessary plugin information
into the POM file. In this way, once the users fire com-
mand: mvn org.uniapr:uniapr-plugin:validate,
the plugin will automatically obtain all the necessary infor-
mation for patch validation. It will automatically obtain the
test code, source code, and 3-rd party libraries from the
underlying POM file for the actual test execution. Furthermore,
it will automatically load all the patches from the default
patches-pool directory (note that the patch directory name
and patch can be configured through POM as well) created by
the APR add-ons for patch validation. The current UniAPR
version assumes the patch directory generated by the APR
add-ons to include all available patches represented by their
patched bytecode files, i.e., the patch pool is constructed before
patch validation. Note that, each patch may involve more than
one patched bytecode file, e.g., some APR tools (such as
SimFix [17]) can fix bugs with multiple edits.

During patch validation, UniAPR forks a JVM and passes
all the information about the test suites and the subject
programs to the child process. The process runs tests on each
patch and reports their status. We use TCP Socket Connections
to communicate between processes. UniAPR repeats this pro-
cess of forking and receiving report results until all the patches
are executed. It is worth noting that it is very easy for UniAPR
to fork two or more processes to take maximum advantage of
today’s powerful machines. However, for a fair comparison
with existing work, we always ensure that only one JVM is
running patch validation at any given time stamp.

E. Experimental Setup

For each of the studied APR tools, we perform the following
experiments on all the bugs that have been reported as fixed
in their original papers:

First, we execute the original APR tools to trace their orig-
inal patch-validation time and detailed repair results (e.g., the
number of patches executed and plausible patches produced).
Note that the only exception is for CapGen: digging into the
decompiled CapGen code (CapGen source code is not avail-
able), we observed that CapGen excluded some (expensive)
tests for certain bugs via unsafe test selection. Such unsafe
test selection is inconsistent with the original paper [48], and
can be dangerous (i.e., it may fail to falsify incorrect patches).
Therefore, to enable a fair and realistic study, for CapGen,
we build a variant for vanilla UniAPR that simply restarts a

new JVM for each patch (same as CapGen) to simulate the
original CapGen performance. Note that if we had presented
the performance comparison between UniAPR and the original
CapGen using the same reduced tests, the UniAPR speedup
can be even larger because UniAPR mainly reduces the JVM-
restart overhead — similar reduction on JVM overhead would
yield larger overall speedup given shorter test-execution time
(as the overall patch-validation time includes JVM overhead
and test-execution time). For example, the average speedup
achieved by UniAPR with JVM-reset on Chart bugs is 15.7X
compared with the original CapGen (on the same set of
reduced tests) and 8.4X compared with our simulated CapGen.

Next, we modify the studied tools and make them conform
to UniAPR add-on interfaces, i.e., dumping all the generated
patches into the patch directory format required by UniAPR.
Then, we launch our UniAPR to validate all the patches
generated by each of the studied APR tools on all the available
tests, and trace the new patch validation time and results. Note
that we repeat this step for both variants of UniAPR (i.e.,
vanilla UniAPR and UniAPR with JVM reset) to evaluate their
respective performance.

To evaluate our UniAPR variants, we include the following
metrics: (1) the speedup compared with the original patch
validation time, measuring the effectiveness of UniAPR, and
(2) the repair results compared with the original patch vali-
dation, measuring the precision of our patch validation (i.e.,
checking whether UniAPR fails to fix any bugs that can be
fixed via traditional patch validation). All our experimentation
is done on a Dell workstation with Intel Xeon CPU E5-2697
v4@2.30GHz and 98GB RAM, running Ubuntu 16.04.4 LTS
and Oracle Java 64-Bit Server version 1.7.0 80.

V. RESULT ANALYSIS

A. RQ1: Vanilla On-the-fly Patch Validation

1) Effectiveness: For answering this RQ, we evaluated
vanilla UniAPR (i.e., without JVM-reset) that is configured
to use the add-on corresponding to each studied APR tool.
The main experimental results are presented in Figure 6. In
each sub-figure, the horizontal axis presents all the bugs that
have been reported to be fixed by each studied tool, while the
vertical axis presents the time cost (s); the solid and dashed
lines present the time cost for traditional patch validation and
our vanilla UniAPR, respectively.

From the figure, we can observe that the vanilla UniAPR can
substantially speed up the existing patch validation component
for all state-of-the-art APR tools with almost no slowdowns.
For example, when running ACS on Math-25, the traditional
patch validation costs 698s, while on-the-fly patch validation
via vanilla UniAPR takes only 2.3s to produce the same
patch validation results, i.e., 304.89X speedup; when running
SimFix on Lang-60, the traditional patch validation costs 924s,
while vanilla UniAPR takes only 4s to produce the same
patch validation results, i.e., 229.96X speedup; when running
CapGen on Math-80, the traditional patch validation costs
18,991s, while vanilla UniAPR takes only 1582s to produce
the same patch validation results, i.e., 12.00X speedup. Note

Tool # All # Mismatch Ratio (%)
CapGen 22 3 13.64%
SimFix 34 1 2.94%
ACS 18 0 0.00%
All 74 4 5.41%

TABLE IV: Inconsistent fixing results

that we have further marked various peak speedups in the
figure to help better understand the effectiveness of UniAPR.
To our knowledge, this is the first study demonstrating that on-
the-fly patch validation can also substantially speed up state-
of-the-art source-level APR.

2) Precision: We further study the number of bugs that
vanilla UniAPR does not produce the same repair results as
the traditional patch validation (that restarts a new JVM for
each patch). Table IV presents the summarized results for
all the studied APR tools on all their fixable bugs. In this
table, Column “Tool” presents the studied APR tools, Column
“# All” presents the number of all studied fixable bugs for
each APR tool, Column “# Mismatch” presents the number of
bugs that vanilla UniAPR has inconsistent fixing results with
the original APR tool, and Column “Ratio (%)” presents the
ratio of bugs with inconsistent results. From this table, we
can observe that vanilla UniAPR produces imprecise results
for 5.41% of the studied cases overall. To our knowledge, this
is the first empirical study demonstrating that on-the-fly patch
validation may produce imprecise/unsound results compared
to traditional patch validation. Another interesting finding is
that 3 out of the 4 cases with inconsistent patching results
occur on the CapGen APR tool. One potential reason is that
CapGen is a pattern-based APR system and may generate far
more patches than SimFix and ACS. For example, CapGen
on average generates over 1,400 patches for each studied bug,
while SimFix only generates around 150 on average. In this
way, CapGen has way more patches that may affect the correct
patch execution than the other studied APR tools. Note that
SimFix has only around 150 patches on average since we only
studied its fixed bugs; if we had considered all Defects4J bugs
studied by the original SimFix paper (including the bugs that
cannot be fixed by SimFix), SimFix will produce many more
patches, exposing more imprecise/unsound patch validation
issues as well as leading to much larger UniAPR speedups.

B. RQ2: On-the-fly Patch Validation via JVM-Reset

1) Effectiveness: We now present the experimental results
for our UniAPR with JVM-reset. The main experimental
results are presented in Figure 7. In each sub-figure, the
horizontal axis presents all the bugs that have been reported to
be fixed by each studied tool, while the vertical axis presents
the time cost (s); the solid and dashed lines present the time
cost for traditional patch validation and UniAPR with JVM
reset, respectively. From the figure, we can observe that for
all the studied APR tools, UniAPR with JVM reset can also
substantially speed up the existing patch validation component
with almost no performance degradation. For example, when
running ACS on Math-25, the traditional patch validation
costs 698s, while on-the-fly patch validation via UniAPR

