
Advanced Software Testing and
Debugging (CS598)

Guided Unit Test Generation

Lingming Zhang
Spring 2022

Testing: basic concepts
• Test case (or, simply test): an execution of the software with a given

test input, including:
• Input values
• Sometimes include execution steps
• Expected outputs (test oracle)

• Test suite: a finite set of tests
• Usually can be run together in sequence

• Test adequacy: a measurement to evaluate the test quality
• Such as code coverage

2

Testing: levels

• Unit Testing
• Test each single module in isolation

• Integration Testing
• Test the interaction between modules

• System Testing
• Test the system as a whole, by

developers

• Acceptance Testing
• Validate the system against user

requirements, by customers with no
formal test cases

3

zw

Unit Testing

Integration Testing

System /
Acceptance

Testing

Types of test generation

4

• Black-box (functional) vs. white-box (structural) testing

• Black-box test generation: generates tests based on the functionality
of the program
• White-box test generation: generates tests based on the source-code

structure of the program

Input OutputSoftware SoftwareInput Output

White-box generation granularities

• Projects providing a number of public APIs for external use (e.g., JDK lib)
• Method-level test generation: consider various method invocation sequences to

expose possible faults

• Projects usually used as a whole (e.g., scientific computation software)
• Path-level generation: consider all the possible execution paths to cover most

program elements

5

Guided unit test generation (this class)

Symbolic execution (next class)

This class

• Feedback-directed Random Test Generation (ICSE'07)
• Whole Test Suite Generation (TSE'12)

6

Execution steps
Test oracle

Input values

Problem: unit test generation

7

Program under test:
public class Math{

public static int sum(int a, int b){
return a+b;

}
…

}

Example JUnit test:
public class MathTest{

@Test
public void testSum (){

int a=1;
int b=1;
int c=Math.sum(a, b);
assertEquals(2,c);

}
…

}

Is this an important problem?

Commons-Math

84,377 lines of source code

86,924 lines of unit-test code

How to perform random white-box test
generation?

• Need to generate a random sequence of
invocations, where each requires
• A random method
• Some random parameters
• A random receiver object

• Not required for static methods
8

public class HashSet extends Set{
public boolean add(Object o){…}
public boolean remove(Object o){…}
public boolean isEmpty(){…}
public boolean equals(Object o){…}
...

}

Program under test

Set s = new HashSet();
s.add(“hi”);

Set s = new HashSet();
s.add(“hi”);
s.remove(null);

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Generated test t1

Generated test t2

Generated test t3

Generation

…

Random method-sequence generation:
limitations
• Does not have test oracles
• E.g., an ideal test oracle for the test below: assertEquals(1, s.size())

• Cannot generate complex tests
• E.g., the parameters of some method invocations can be generated by other

method invocations

• Can have many redundant&illegal tests

9

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();

A random test

Random method-sequence generation:
redundant&illegal tests

10

1. Useful test:
Set s = new HashSet();
s.add(“hi”);

3. Useful test:
Date d = new Date(2006, 2, 14);

2. Redundant test:
Set s = new HashSet();
s.add(“hi”);
s.isEmpty();

4. Illegal test:
Date d = new Date(2006, 2, 14);
d.setMonth(-1); // pre: argument >= 0

5. Illegal test:
Date d = new Date(2006, 2, 14);
d.setMonth(-1); // pre: argument >= 0
d.setDay(5);

Should not output

Should not even generate

Should not output

Randoop: feedback-directed (adaptive)
random test generation
• Use code contracts as test oracles
• Build test inputs incrementally
• New test inputs extend previous ones
• In this context, a test input is a method sequence

• As soon as a test is created, use its execution results to guide generation
• away from redundant or illegal method sequences
• towards sequences that create new object states

11

Randoop input/output

• Input:
• Classes under test
• Time limit
• Set of contracts

• Method contracts (e.g. “o.hashCode() throws no exception”)
• Object invariants (e.g. “o.equals(o) == true”)

• Output: contract-violating test cases

12

HashMap h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();
LinkedList l = new LinkedList();
l.addFirst(a);
TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u));

fails on Sun’s JDK 1.5/1.6
when executed

Randoop: algorithm

• Seed value pool for primitive types
• pool = { 0, 1, true, false, “hi”, null ... }

• Do until time limit expires:
• Create a new sequence

• Randomly pick a method call m(T1...Tk)/Tret

• For each input parameter of type Ti, randomly pick a sequence Si from the value pool
that constructs an object vi of type Ti

• Create new sequence Snew = S1; ... ; Sk ; Tret vnew = m(v1...vk);
• if Snew was previously created (lexically), go to first step

• Classify the new sequence Snew
• May discard, output as test case, or add to pool

13

Randoop: example
Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

Method
Parameter
Receiver object

14

Randoop: example

15

Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Test2:
A a1=new A();

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

Method
Parameter
Receiver object

Randoop: example

16

Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Test2:
A a1=new A();

Test3:
A a1=new A(); //reused from s2
B b2=a1.m1(a1);

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();
B b2=a1.m1(a1);

Method
Parameter
Receiver object

Randoop: example

17

Program under test:
public class A{

public A() {...}
public B m1(A a1) {...}

}
public class B{

public B(int i) {...}
public void m2(B b, A a) {...}

}

Test1:
B b1=new B(0);

Test2:
A a1=new A();

Test3:
A a1=new A();
B b2=a1.m1(a1);

Test4:
B b1=new B(0); //reused from s1
A a1=new A();
B b2=a1.m1(a1); //reused from s3
b1.m2(b2, a1);

…

Value pool:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();
B b2=a1.m1(a1);

S4: …

Method
Parameter
Receiver object

Classifying a sequence

18

Execute and
check contracts

Value pool

Contract
violated?

Contract
violating tests

Sequence
redundant?

Minimize
sequence

Discard
sequence

Yes

No

Yes

No

Start

Redundant sequences

• During generation, maintain a set of all objects created
• A sequence is redundant if all the objects created during its execution

are members of the above set (using equals to compare)
• Could also use more sophisticated state equivalence methods
• E.g. heap canonicalization used in model checkers

19

Tool support

• Input:
• An assembly (for .NET) or a list of classes (for Java)
• Generation time limit
• Optional: a set of contracts to augment default contracts

• Output: a test suite (JUnit or Nunit) containing
• Contract-violating test cases
• Normal-behavior test cases

20

Randoop outputs oracles

• Oracle for contract-violating tests:

• Oracle for normal-behavior tests (regression tests):

21

Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u));//expected to fail

Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
l.add(o);
assertEquals(2, l.size());//expected to pass
assertEquals(false,l.isEmpty());//expected to pass

Find current bugs

Find future bugs

Some Randoop options

• Avoid use of null

• Bias random selection
• Favor shorter sequences
• Favor methods that have been less covered
• Use constants mined from source code

• Source code available:
• https://randoop.github.io/randoop/

22

Statically:
Object o = new Object();
LinkedList l = new LinkedList();
l.add(null);

Dynamically:
Object o = returnNull();
LinkedList l = new LinkedList();
l.add(o);

Code coverage by Randoop

Data structure programs Time (s) Branch
cov.

Bounded stack (30 LOC) 1 100%
Unbounded stack (59 LOC) 1 100%
BS Tree (91 LOC) 1 96%
Binomial heap (309 LOC) 1 84%
Linked list (253 LOC) 1 100%
Tree map (370 LOC) 1 81%
Heap array (71 LOC) 1 100%

23

Bug detection by Randoop: subjects

Subjects LOC Classes

JDK (2 libraries)
(java.util, javax.xml) 53K 272

Apache commons (6 libraries)
(logging, primitives, chain, jelly,
math, collections)

114K 974

.Net libraries (6 libraries) 615K 3455

24

Bug detection by Randoop: methodology

• Ran Randoop on each library
• Used default time limit (2 minutes)

• Contracts:
• o.equals(o)==true
• o.equals(o) throws no exception
• o.hashCode() throws no exception
• o.toString() throw no exception
• No null inputs and:

• Java: No NPEs
• .NET: No NPEs, out-of-bounds, of illegal state exceptions

25

Bug detection by Randoop: subjects

Subjects Failed tests Unique
failed tests

Error-revealing
tests

Distinct
errors

JDK 613 32 29 8
Apache commons 3,044 187 29 6
.Net framework 543 205 196 196
Total 4,200 424 254 210

26

Errors found: examples
• JDK Collections classes have 4 methods that create objects violating

o.equals(o) contract
• Javax.xml creates objects that cause hashCode and toString to crash,

even though objects are well-formed XML constructs
• Apache libraries have constructors that leave fields unset, leading to NPE

on calls of equals, hashCode and toString (this only counts as one bug)
• .Net framework has at least 175 methods that throw an exception

forbidden by the library specification (NPE, out-of-bounds, of illegal state
exception)
• .Net framework has 8 methods that violate o.equals(o)
• .Net framework loops forever on a legal but unexpected input

27

Has Randoop been compared to existing
solutions?
• Systematic testing:
• Java PathFinder (JPF)
• jCUTE

• Undirected Random testing:
• Randoop-feedback
• JCrasher

28

Regression testing scenario

• Randoop can create regression oracles
• Generated test cases using JDK 1.5
• Randoop generated 41K regression test cases

• Ran resulting test cases on
• JDK 1.6 Beta

• 25 test cases failed
• Sun’s implementation of the JDK

• 73 test cases failed
• Failing test cases pointed to 12 distinct errors
• These errors were not found by the extensive compliance test suite that Sun

provides to JDK developers
29

Object o = new Object();
LinkedList l = new LinkedList();
l.addFirst(o);
l.add(o);
assertEquals(2, l.size());//expected to pass
assertEquals(false,l.isEmpty());//expected to pass

Randoop: applications

30

Discussion

• Strengths
• Limitations
• Future work

31

This class

• Feedback-directed Random Test Generation (ICSE'07)
• Whole Test Suite Generation (TSE'12)

32

Genetic algorithm

33

Natural evolution

Genetic algorithm

The eight queens problem

34

Perfect!

The eight queens problem

35

2 attacks!

The eight queens problem

36

3 attacks!

Easily solved via recursion or
dynamic programming!

How about 800 queens problem?!

37

Genetic algorithm: 8/800 queens problem

38

8 queens problem

800 queens problem

Genetic algorithm: test generation (aka
search-based test generation)

39

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Test suite

Crossover and mutation

40

a() b() c() d()

x() y() z()

f() g() h() i()

a() b()

x() y() z()

f() g() h()

a()

a() b() c() d()

x() y() z()

a() b()

x() y() z() a()

f() g() h() i()f() h()g()

(a) Test Suite Crossover

a() b() c()

b() x()

b() x() d()

a() b() c()

(b) Test Case Mutation

Fig. 3. Crossover and mutation are the basic operators for
the search using a GA. Crossover is applied at test suite
level; mutation is applied to test cases and test suites.

the chosen solution representation (see Section 3.2). In partic-
ular we need to define the crossover and mutation operators
for test suites. Furthermore, we need to define how random
test cases are sampled when we initialize the first population
of the GA.

3.5.1 Crossover
The crossover operator (see Figure 3(a)) generates two off-
spring O1 and O2 from two parent test suites P1 and P2. A
random value α is chosen from [0,1]. On one hand, the first
offspring O1 will contain the first α|P1| test cases from the
first parent, followed by the last (1 − α)|P2| test cases from
the second parent. On the other hand, the second offspring O2

will contain the first α|P2| test cases from the second parent,
followed by the last (1−α)|P1| test cases from the first parent.
Because the test cases are independent among them, this

crossover operator always yields valid offspring test suites.
Furthermore, it is easy to see that it decreases the difference
in the number of test cases between the test suites, i.e.,
abs(|O1| − |O2|) ≤ abs(|P1| − |P2|). No offspring will have
more test cases than the largest of its parents. However, it is
possible that the total sum of the length of test cases in an
offspring could increase.

3.5.2 Mutation
The mutation operator for test suites is more complicated than
that used for crossover, because it works both at test suite and
test case levels. When a test suite T is mutated, each of its
test cases is mutated with probability 1/|T |. So, on average,
only one test case is mutated. Then, a number of new random
test cases is added to T : With probability σ, a test case is
added. If it is added, then a second test case is added with
probability σ2, and so on until the ith test case is not added
(which happens with probability 1−σi). Test cases are added
only if the limit N has not been reached, i.e., if n < N .
If a test case is mutated (see Figure 3(b)), then three

types of operations are applied in order: remove, change and
insert. Each is applied with probability 1/3. Therefore, on
average, only one of them is applied, although with probability
(1/3)3 all of them are applied. These three operations work
as follows:
Remove: For a test case t = 〈s1,s2, . . . ,sl〉 with length l,

each statement si is deleted with probability 1/l. As the value

v(si) might be used as a parameter in any of the statements
si+1, . . . ,sl, the test case needs to be repaired to remain valid:
For each statement sj , i < j ≤ l, if sj refers to v(si), then
this reference is replaced with another value out of the set
{v(sk) | 0 ≤ k < j∧k &= i} which has the same type as v(si).
If this is not possible, then sj is deleted as well recursively.
Change: For a test case t = 〈s1,s2, . . . ,sl〉 with length

l, each statement si is changed with probability 1/l. If si is
a primitive statement, then the numeric value represented by
si is changed by a random value in [−∆,∆], where ∆ is a
constant. If the primitive value is a string, then the string is
changed by deleting, replacing, or inserting characters in a way
similar to how sequences of method calls are mutated. In the
case of an array, the length is changed by a random value in
[−∆′,∆′] such that no accesses to the array are invalidated. In
an assignment statement, either the variable on the left or the
right hand side of the assignment is replaced with a different
variable of the same type. If si is not a primitive statement,
then a method, field, or constructor with the same return type
as v(si) and parameters satisfiable with the values in the set
{v(sk) | 0 ≤ k < i} is randomly chosen out of the test cluster.
Insert: With probability σ′, a new statement is inserted at

a random position in the test case. If it is added, then a second
statement is added with probability σ′2, and so on until the
ith statement is not inserted. A new statement is added only
if the limit L has not been reached, i.e., if l < L. For each
insertion, with probability 1/3 a random call of the class under
test or its member classes is inserted, with probability 1/3 a
method call on a value in the set {v(sk) | 0 ≤ k < i} for
insertion at position i is added, and with probability 1/3 a
value {v(sk) | 0 ≤ k < i} is used as a parameter in a call of
the class under test or its member classes. Any parameters of
the selected call are either reused out of the set {v(sk) | 0 ≤
k < i}, set to null, or randomly generated.
If after applying these mutation operators a test case t has no

statements left (i.e., all have been removed), then t is removed
from T .
To evaluate the fitness of a test suite, it is necessary to

execute all its test cases and collect the branch information.
During the search, on average only one test case is changed in
a test suite for each generation. This means that re-executing
all test cases is not necessary, as the coverage information can
be carried over from the previous execution.

3.5.3 Random Test Cases
Random test cases are needed to initialize the first generation
of the GA, and when mutating test suites. Sampling a test case
at random means that each possible test case in the search
space has a non-zero probability of being sampled, and these
probabilities are independent. In other words, the probability
of sampling a specific test case is constant and it does not
depend on the test cases sampled so far.
When a test case representation is complex and it is of

variable length (as it happens in our case, see Section 3.2),
it is often not possible to sample test cases with uniform
distribution (i.e., each test case having the same probability
of being sampled). Even when it would be possible to use a
uniform distribution, it would be unwise (for more details on

Fitness function and selection

• 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑇 = 𝑀 − 𝑀𝑇 + ∑-∈/ 𝑑𝑖𝑠𝑡 𝑏, 𝑇

41

if A = B è d(b, T) = | A - B |

Branch distance, d(b,T), describes how “close” b
is to being covered (normalized to [0,1])

All methods
in program

Methods
covered by T

All branches
in program

If the branch is covered

If the predicate is executed at least twice

Otherwise

• 𝑑𝑖𝑠𝑡 𝑏, 𝑇 = 3
0

𝑑(𝑏, 𝑇)
1

Discussion

• Strengths
• Limitations
• Future work

42

Thanks and stay safe!

43

