Advanced Software Testing and
Debugging (CS598)
Symbolic Execution

Fall 2020
Lingming Zhang

Brief history

* 1976: A system to generate test data and symbolically execute
programs (Lori Clarke)

* 1976: Symbolic execution and program testing (James King)

* 2005-present: practical symbolic execution
e Using SMT solvers

Heuristics to control exponential explosion

Heap modeling and reasoning about pointers

Environment modeling

Dealing with solver limitations

Program execution paths

* Program can be viewed as binary
tree with possibly infinite depth

* Each node represents the
execution of a conditional
statement

* Each edge represents the
execution of a sequence of non-
conditional statements

* Each path in the tree represents an
equivalence class of inputs

(a)

Example

a==null
- T
Code under test a.Length>0 \<>
CoverMe(int[] a) { F T a==null
(a == null)
; a[0]==123...
(a.Length > 0) al=null && T
(a[0] == 1234567890) a.Length<=0 (j//\
new Exception("bug");
} al=null && al=null &&

a.Length>0 && a.Length>0 &&
a[0]!=1234567890 a[0]==1234567890

Random testing?

* Random Testing

Code under test * Generate random inputs
(;ZozvzerMe)(lajt * Execute the program on
; those (concrete) inputs
. >
i (L:—,we[g]gt=h= 1%4567890) * Problem:
new Exception("bug"); * Probability of reaching error could
} be astronomically small

Probability of ERROR for the gray branch:
1/23%=0.000000023%

The spectrum of program testing/verification

O Verification

Bounded verification &
symbolic execution

Concolic testing &
whitebox fuzzing

O

Random/fuzz testing

Confidence

Cost (programmer effort, time, expertise)

This class

e KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs (OSDI'08)

* Hybrid Concolic Testing (ICSE'07)

Symbolic execution

* Symbolic Execution
* Use symbolic values for inputs
e Execute program symbolically on symbolic input values
* Collect symbolic path constraints (PCs)
e Use SMT/SAT solvers to check if a branch can be taken

Code under test .
foo(int i) { - > Symbolic Test
j=2*1; Symbolic pach execution engine | generation .
=it constraint collection > I
i=i*j; - 0\ High-quality
(i<1) o Solutions L tests
i=-i; constramtsV L

l;

} Constraint solver

Symbolic execution: example

Code under test
foo(int i) {
j=2%1;
i=i++;
i=i%j
(i<1)

i=-i;

Concrete execution
i=1
i=1, j=2%*1
i=1+1
i=2%2
4<1=false

return 4;

Symbolic execution
i=lg
PC=true, i=ly, j=2%* Iy
PC=true, i=ly+1, j=2%* I,
PC=true, i=(lg+1)*2ly, j=2* I,
PC=true, i=(lg+1)*2ly, j=2* I

S F

PC=(lg+1)*21p<1, i=-(lg+1)*2l, , .2
PC=(lp+1)*21y<1, return -(lo+1)*2l,
PC=(lg+1)*2ly>=1, return (lo+1)*2l,

Generated test1:

i=l,=0 Generated test2:
i=|o=1

Symbolic execution: bug finding

* How to extend symbolic execution to catch non-crash bugs?

* Add dedicated checkers at dangerous code locations!

* Divide by zero example: y = x / z where x and z are symbolic variables and
assume current PCis p

e Check if z==0&&p is possible!

foo(int i) {

j=2%1; PC=(lp+1)*2lp<1

0 0o~

i=i++; i=_(|0+1)*2|0’ -> (IO+1)*2|0<1 A —> = |o= Oor i=|o= -1
i=(i*j,') =0 -(lg+1)*215=0 Trigger the bug!

i<1

i=-i;
i<j/i; 7 False branch pC=(lp+1)*2ly>=1, > (lo+1)*2lp>=1 A > UNSAT

- i= (1g+1)*2l,, (I +1)*21,=0 >
) i=0

Code under test We can easily generate a dedicated checker for each kind of bug
(e.g., buffer overflow, integer overflow, ...) 10

Challenges: path explosion

* Interleaving two search heuristics:

 Random Path Selection: when a branch point is reached, the set of states in
each subtree has equal probability of being selected

* Coverage-Optimized Search: selects states likely to cover new code in the
immediate future, based on
* The minimum distance to an uncovered instruction
* The call stack of the state
* Whether the state recently covered new code

Challenges: optimizing SMT queries

* Expression rewriting
e Simple arithmetic simplifications (x * 0 = 0)
e Strength reduction (x * 2n = x << n)
* Linear simplification (2 * x - x =x)

* Constraint set simplification
e Xx<10&&x=5 --> x=5

* Implied value concretization
*x+1=10 --> x=9

* Constraint independence
¢ <j&&j<20&& k>0&&i=20 --> i<j&& i<20 && i=20

Challenges: optimizing SMT queries (cont.)

400

* Counter-example cache
* <10 && i =10 (no solution)

* i <10 && j =8 (satisfiable, with variable
assignmentsi > 5,j - 8)

Average Time (s)

» Superset of unsatisfiable constraints 100 |

e {i<10,i=10,j=12} (unsatisfiable)

e Subset of satisfiable constraints
 {i < 10} (satisfiable withi - 5, j > 8)

300 +

200 +

— None

-- All

Cex. Cache
Independence

Num. Instructions (normalized)

Figure 2: The effect of KLEE’s solver optimizations over

° S u pe rset Of SatiSfia b I e constra | nts time, showing they become more effective over time, as the

caches fill and queries become more complicated. The num-

° Sa me va ria b|e assign ments m |ght WOI"k ber of executed instructions 1s normalized so that data can be

aggregated across all applications.

Challenges: environment modeling

fd = open(“t.txt”, O_RDONLY);

* If all arguments are concrete, forward
to OS directly

fd = open(sym_str, O_RDONLY);

e Otherwise, provide models that can
handle symbolic files

* Goal is to explore all possible
interactions with the environment

* About 2,500 LoC to define simple
models for roughly 40 system calls

e e.g., open, read, write, stat, |seek,
ftruncate, ioctl

ssize t read(int fd, void *buf, size_t count) {
klee_fd *f = &fds[fd];

/* sym files are fixed size: don’t read
beyond the end. */
(f->off >= f->size)
0;
count = min(count, f->size - f—>off);
memcpy(buf, f->file_data + f->off, count);
f->off += count;
count;

Sketch of KLEE’s model for read()

KLEE implementation

:> :> ==t
bitcode

LLVM

V. o

Symboli
env)illlj;n;IeCnt <;:> KLEE ::> Generated

tests
Path
condition Concre te
solution

Constraint
Solver

Benchmarks

* 89 programs in GNU Coreutils (version 6.10), roughly 80,000 lines of
library code and 61,000 lines in the actual utilities, including ones
* Managing the file system (e.g., Is, dd, chmod)
* Displaying and configuring system properties (e.g., logname, printenv)
e Controlling command invocation (e.g., nohup, nice, env)
e Processing text files (e.g., sort, od, patch)

* Two other UNIX utility suites: Busybox, a widely-used distribution for
embedded systems, and the latest release for Minix

* The HiStar operating system kernel

Coverage

COREUTILS BUSYBOX
Coverage KLEE | Devel. || KLEE | Devel.
(w/o lib) tests tests tests tests
100 % 16 1 31 4
90-100 % 40 6 24 3
80-90 % 21 20 10 15
70-80% 7 23 5 6
60-70 % 5 15 2 7
50-60 % - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30
Overall cov. 84.5% | 67.7% || 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% 97.5% | 58.9%
Ave cov/App 90.9% | 68.4% 93.5% | 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges for KLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and

median coverage per application.

17

Coreutils bugs detected

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -f %0 1

tl.txt: "\t \tMD5 ("

12.4xt: "\b\b\b\b\b\b\b\t"

t3.txt: "\n"

td.axt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

18

Busybox bugs detected

date -I
ls --co cut -f t3.txt
chown a.a - install --m
kill -1 a nmeter -
setuidgid a "" ean}r -
printf "% %" B setuidgid
od tl.txt envuidgid
od t2.txt envdlr.—
printf % arp -Alnet
printf %Lo tar tf_ /
tr [top d
tr [= setarch "" ""
tr [a-z <full-path>/1linux32
<full-path>/1linux64
t;IW'Z hexdump -e ""
12.1xt: _
ing6 -
t3.4xt: \t\n p1ng

Figure 10: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in BUSYBOX.
When multiple applications crash because of the same shared
(buggy) piece of code, we group them by shading.

Inconsistencies between Coreutils and

Busybox

[O II<II 1]

Input BUSYBOX COREUTILS

comm tl.txt t2.txt [does not show difference] [shows difference]

tee - [does not copy twice to stdout] [does]

tee "" <tl.txt [infinite loop] [terminates]

cksum / "4294967295 0 /" "/: 1Is a directory"
split / "/: Is a directory"

tr [duplicates input on stdout] "missing operand"

"binary operator expected"

sum -s <tl.txt "97 1 =" "97 1"
tail -21 [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
ls --color-blah [accepts] [rejects]
tl.txt: a 2.1xt: b

Table 3: Very small subset of the mismatches KLEE found between the BUSYBOX and COREUTILS versions of equivalent utili-
ties. The first three are serious correctness errors; most of the others are revealing missing functionality.

Inconsistencies between Coreutils and
Busybox: how?

X, vy

Implementation 2

assert(mod(x,y) == mod_opt(x,y));

0,

mod_opt(X, y{
((y&-y)==y) // power of two?
x& (y-1);
mod_opt(
X%V; x%y;
} }
Implementation 1
main(){
X, Y,
make_symbolic(&x, (x));
make_symbolic(&y, (¥));

Every assertion can be
treated as a branch
statement with two

outgoing branches (i.e., hold
or not); symbolic execution
will try to cover both!

Discussion

e Strengths
e Limitations
e Future work

This class

e KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs (OSDI'08)

* Hybrid Concolic Testing (ICSE'07)

23

Symbolic execution: coverage problem

Symbolic execution may not reach deep into the
execution tree. Specially when encountering loops

Solution: concolic execution

Concolic=Concrete+Symbolic

* Generate a random seed input to dive into the
program execution tree

* Concretely execute the program with the
random seed input and collect the path
constraint, e.g., a && b && ¢

* In the next iteration, negate the last conjunct to
obtain the constraint: a && b && Ic

* Solve it to get input to the path which matches
all the branch decisions except the last one

Execution path space

Concolic execution

Code under test

CoverMe(int[] a) {
(a == null)

(a.Length > 0)
(a[0] == 1234567890)
new Exception("bug");

a==null

F T
alen;a;;;//ﬂ\\\\ti>

F

T
a[0]==123...

o e

Executed paths

Choose next patch

Solve

Constraints to solve Data

Monitor
Observed constraints

null a==null
al=null {} al=null &&
l(a.Length>0)
al=null && {1} al=null &&
a.Length>0 a.Length>0 &&
a[0]!'=1234567890
al=null && {123..} al=null &&

a.Length>0 &&
a[0]==1234567890

a.Length>0 &&
a[0]==1234567890

DONE, no path left!

26

Concolic execution: another example

Code under test

CoverMe(int[] a, int b) {
(a == null)

(a.Length > 0)
(a[0] == hash(b))
new Exception("bug");

a==null

F T
a.Lenm

F

T
a[0]==hash(b)

o e

Executed paths

Choose next patch

Solve Monitor
Constraints to solve Data Observed constraints
null, 0 a==null
al=null 3,0 al=null &&
l(a.Length>0)
al=null && {1},0 al=null &&
a.Length>0 a.Length>0 &&
a[0]!'=hash(b)
al=null && {434..},0 al=null &&
a.Length>0 && a.Length>0 &&
a[0]==hash(0) a[0]==434...
/
P
Concretized!

DONE, no path left!

Limitations

Explored by
concolic execution

Execution path space

Limitations: a comparative view

4 N 4)

. AN /

Concolic testing: wide and shallow Random testing: narrow and deep

Limitations: example

Example () { * COVER_ME can be hit on an input sequence
state = 0; e s =‘UlUC’
(1) >=
s = input(); ec:\n
c = input();
(c=="7 && state==0) can get to state = 2, but
state=1; difficult to get ‘UIUC’ as a sequence
(o' && state==1) « Probability: 1/(28)* » 2.3X101°
state=2; Y. .
S[l]z(i[ﬁ]ggu 88 * Concolic testing can generate ‘UIUC’, but
s[2]=="U’ && explores many paths to state = 2
s[3]=="C’ &&
state==2) { . i
COVER ME: Similar code sjcructur.e in
) e Text editors (vi)
} * Parsers (lexer)
} .

Event-driven programs (GUI)

Hybrid concolic testing

/
while (not required coverage) {
while (not saturation)

Checkpoint;

while (not increase in coverage)
perform concolic testing;

Restore;

Interleave and concolic testing
for deep&broad search to increase coverage

Hybrid concolic testing: example

Example(){ I$I’ (&I’ l_l’ 161’ I:I’ l%l’ l/\l’ l\nI’
state = 0; IXI (~)
(1) { !
s = input(); e Saturates after many (~10000) iterations
c = input(); .
(c=="7 &8 state==0) In less than 1 second
state=1; e COVER_ME is not reached
(c=="\n" && state==1)
state=2;

[0]==U" && . . _aqp o _aqny
s[1]=(i’l’ 2 * Concolic phase: s[0]=‘U’, s[1]="1, s[2]=‘V’,
s[2]=="U’ && s[3]=C’
s[31=="C’ && Reaches COVER_ME!
state==2) {

COVER_ME:;

Implementation

* An extension on the CUTE:
* A concolic execution engine for C

* Code instrumentation via CIL, a framework for parsing and transforming C
programs?

» Constraint solving via Ip_solve, a library for integer linear programming?

1 https://github.com/cil-project/cil
2 http://Ipsolve.sourceforge.net/5.5/

33

https://github.com/cil-project/cil
http://lpsolve.sourceforge.net/5.5/

Testing red-black tree

Branch Coverage in Percentage

Seed | Random | Concolic | Hybrid Concolic
Testing Testing Testing

523 32.27 5248 66.67
7487 32.27 5248 67.02
6726 32.27 5248 66.67
5439 32.27 5248 67.73
4494 32.27 5248 69.86
Average 32.27 52.48 67.59

Table 1. Results of Testing Red-Black Tree

Testing Vim editor

Branch Coverage in Percentage
Seed | Random | Concolic | Hybrid Concolic

Testing Testing Testing
877443 8.01 21.43 41.93
67532 8.16 21.43 40.39
98732 8.72 21.43 33.67
32761 7.80 21.43 35.45
28683 9.75 21.43 40.53
Average 8.17 21.43 37.86

Table 2. Results of Testing the VIM Test Editor

Discussion

e Strengths
e Limitations
e Future work

Symbolic execution engines you may want to
try

 C family: KLEE (http://llvm.org/)

o C#: Pex/IntelliTest (http://research.microsoft.com/en-us/projects/pex/)

e Java: Java PathFinder (https://github.com/SymbolicPathFinder/jpf-symbc)
e JavaScript: Jalangi2 (https://github.com/Samsung/jalangi2)

* Binaries (x86, ARM, ...): S2E (https://s2e.systems/)

37

http://llvm.org/
http://research.microsoft.com/en-us/projects/pex/
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/Samsung/jalangi2
https://s2e.systems/

Further readings

* Koushik Sen, Darko Marinov, Gul Agha. CUTE: A Concolic Unit Testing
Engine for C. 2005, FSE.

* Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill,
Dawson R. Engler. EXE: Automatically Generating Inputs of Death.
2006, CCS.

e Patrice Godefroid, Michael Y. Levin, David Molnar. Automated
Whitebox Fuzz Testing. 2008, NDSS.

Thanks and stay safe!

