
Advanced Software Testing and
Debugging (CS598)
Symbolic Execution

Lingming Zhang
Fall 2020

Brief history
• 1976: A system to generate test data and symbolically execute

programs (Lori Clarke)
• 1976: Symbolic execution and program testing (James King)

• 2005-present: practical symbolic execution
• Using SMT solvers
• Heuristics to control exponential explosion
• Heap modeling and reasoning about pointers
• Environment modeling
• Dealing with solver limitations

2

Program execution paths

• Program can be viewed as binary
tree with possibly infinite depth

• Each node represents the
execution of a conditional
statement

• Each edge represents the
execution of a sequence of non-
conditional statements

• Each path in the tree represents an
equivalence class of inputs

3

if(a)

if(b)

TF

F T
if(b)

F T

if (a)
…

if (b)
…

Example

4

void CoverMe(int[] a) {
if (a == null)

return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

Code under test

a==null

a.Length>0

a[0]==123…

F T

TF

F Ta!=null &&
a.Length<=0

a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

a==null

Random testing?

5

Probability of ERROR for the gray branch:
1/232 ≈ 0.000000023%

void CoverMe(int[] a) {
if (a == null)

return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

Code under test
• Random Testing

• Generate random inputs
• Execute the program on

those (concrete) inputs

• Problem:
• Probability of reaching error could

be astronomically small

The spectrum of program testing/verification

6

Random/fuzz testing

Concolic testing &
whitebox fuzzing

Bounded verification &
symbolic execution

Verification
Co

nf
id

en
ce

Cost (programmer effort, time, expertise)

This class

• KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs (OSDI'08)

• Hybrid Concolic Testing (ICSE'07)

7

Symbolic execution
• Symbolic Execution

• Use symbolic values for inputs
• Execute program symbolically on symbolic input values
• Collect symbolic path constraints (PCs)
• Use SMT/SAT solvers to check if a branch can be taken

8

int foo(int i) {
int j=2*I;
i=i++;
i=i*j;
if(i<1)

i=-i;
return i;

}

Code under test
Symbolic

execution engine

Constraint solver

High-quality
tests

Symbolic pach
constraint collection

Path
constraints Solutions

Test
generation

Symbolic execution: example

9

int foo(int i) {
int j=2*I;
i=i++;
i=i*j;
if(i<1)

i=-i;
return i;

}

Code under test Concrete execution Symbolic execution
i=I0
PC=true, i= I0, j=2* I0
PC=true, i= I0 +1, j=2* I0
PC=true, i=(I0 +1)*2I0 , j=2* I0
PC=true, i=(I0 +1)*2I0 , j=2* I0

PC=(I0 +1)*2I0<1, i=-(I0 +1)*2I0 , …
PC=(I0 +1)*2I0<1, return -(I0 +1)*2I0

PC=(I0 +1)*2I0>=1, return (I0 +1)*2I0

F
T

i=1
i=1, j=2*1
i=1+1
i=2*2
4<1=false

return 4;

Generated test1:
i=I0=0 Generated test2:

i=I0=1

Symbolic execution: bug finding
• How to extend symbolic execution to catch non-crash bugs?
• Add dedicated checkers at dangerous code locations!

• Divide by zero example: y = x / z where x and z are symbolic variables and
assume current PC is p

• Check if z==0&&p is possible!

10

int foo(int i) {
int j=2*I;
i=i++;
i=i*j;
if(i<1)

i=-i;
i=j/i;
return i;

}
Code under test

PC=(I0 +1)*2I0<1,
i=-(I0 +1)*2I0,
i=0

PC=(I0 +1)*2I0>=1,
i= (I0 +1)*2I0,
i=0

True branch

False branch

(I0 +1)*2I0<1 ∧
-(I0 +1)*2I0=0

(I0 +1)*2I0>=1 ∧
(I0 +1)*2I0=0

i= I0 = 0 or i=I0 = -1
Trigger the bug!

UNSAT
Always safe!

We can easily generate a dedicated checker for each kind of bug
(e.g., buffer overflow, integer overflow, …)

Challenges: path explosion

• Interleaving two search heuristics:
• Random Path Selection: when a branch point is reached, the set of states in

each subtree has equal probability of being selected
• Coverage-Optimized Search: selects states likely to cover new code in the

immediate future, based on
• The minimum distance to an uncovered instruction
• The call stack of the state
• Whether the state recently covered new code

11

Challenges: optimizing SMT queries

• Expression rewriting
• Simple arithmetic simplifications (x * 0 = 0)
• Strength reduction (x * 2n = x << n)
• Linear simplification (2 * x - x = x)

• Constraint set simplification
• x < 10 && x = 5 --> x = 5

• Implied value concretization
• x + 1 = 10 --> x = 9

• Constraint independence
• i<j && j < 20 && k > 0 && i = 20 --> i<j && i<20 && i=20

12

Challenges: optimizing SMT queries (cont.)

• Counter-example cache
• i < 10 && i = 10 (no solution)
• i < 10 && j = 8 (satisfiable, with variable

assignments i → 5, j → 8)

• Superset of unsatisfiable constraints
• {i < 10, i = 10, j = 12} (unsatisfiable)

• Subset of satisfiable constraints
• {i < 10} (satisfiable with i → 5, j → 8)

• Superset of satisfiable constraints
• Same variable assignments might work

13

Optimizations Queries Time (s) STP Time (s)
None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Table 1: Performance comparison of KLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.

currently has entries for {i < 10, i = 10} (no solution)
and {i < 10, j = 8} (satisfiable, with variable assign-
ments i → 5, j → 8).
1 When a subset of a constraint set has no solution,
then neither does the original constraint set. Adding
constraints to an unsatisfiable constraint set cannot
make it satisfiable. For example, given the cache
above, {i < 10, i = 10, j = 12} is quickly deter-
mined to be unsatisfiable.

2 When a superset of a constraint set has a solution,
that solution also satisfies the original constraint set.
Dropping constraints from a constraint set does not
invalidate a solution to that set. The assignment
i → 5, j → 8, for example, satisfies either i < 10
or j = 8 individually.

3 When a subset of a constraint set has a solution, it is
likely that this is also a solution for the original set.
This is because the extra constraints often do not in-
validate the solution to the subset. Because checking
a potential solution is cheap, KLEE tries substituting
in all solutions for subsets of the constraint set and
returns a satisfying solution, if found. For example,
the constraint set {i < 10, j = 8, i "= 3} can still be
satisfied by i → 5, j → 8.
To demonstrate the effectiveness of these optimiza-

tions, we performed an experiment where COREUTILS
applications were run for 5 minutes with both of these
optimizations turned off. We then deterministically reran
the exact same workload with constraint independence
and the counter-example cache enabled separately and
together for the same number of instructions. This exper-
iment was done on a large sample of COREUTILS utili-
ties. The results in Table 1 show the averaged results.
As expected, the independence optimization by itself

does not eliminate any queries, but the simplifications it
performs reduce the overall running time by almost half
(45%). The counter-example cache reduces both the run-
ning time and the number of STP queries by 40%. How-
ever, the real win comes when both optimizations are en-
abled; in this case the hit rate for the counter-example
cache greatly increase due to the queries first being sim-
plified via independence. For the sample runs, the av-

0

100

200

300

400

A
ve

ra
ge

T
im

e
(s

)
A

ve
ra

ge
T

im
e

(s
)

0 0.2 0.4 0.6 0.8 1

Num. Instructions (normalized)Num. Instructions (normalized)

None
Cex. Cache
Independence
All

Figure 2: The effect of KLEE’s solver optimizations over
time, showing they become more effective over time, as the
caches fill and queries become more complicated. The num-
ber of executed instructions is normalized so that data can be
aggregated across all applications.

erage number of STP queries are reduced to 5% of the
original number and the average runtime decreases by
more than an order of magnitude.
It is also worth noting the degree to which STP time

(time spent solving queries) dominates runtime. For the
original runs, STP accounts for 92% of overall execution
time on average (the combined optimizations reduce this
by almost 300%). With both optimizations enabled this
percentage drops to 41%, which is typical for applica-
tions we have tested. Finally, Figure 2 shows the efficacy
of KLEE’s optimizations increases with time — as the
counter-example cache is filled and query sizes increase,
the speed-up from the optimizations also increases.

3.4 State scheduling

KLEE selects the state to run at each instruction by inter-
leaving the following two search heuristics.
Random Path Selectionmaintains a binary tree record-

ing the programpath followed for all active states, i.e. the
leaves of the tree are the current states and the internal
nodes are places where execution forked. States are se-
lected by traversing this tree from the root and randomly
selecting the path to follow at branch points. Therefore,
when a branch point is reached, the set of states in each
subtree has equal probability of being selected, regard-
less of the size of their subtrees. This strategy has two
important properties. First, it favors states high in the
branch tree. These states have less constraints on their
symbolic inputs and so have greater freedom to reach un-
covered code. Second, and most importantly, this strat-
egy avoids starvation when some part of the program is
rapidly creating new states (“fork bombing”) as it hap-
pens when a tight loop contains a symbolic condition.
Note that the simply selecting a state at random has nei-
ther property.

6

Challenges: environment modeling

• If all arguments are concrete, forward
to OS directly

• Otherwise, provide models that can
handle symbolic files

• Goal is to explore all possible
interactions with the environment

• About 2,500 LoC to define simple
models for roughly 40 system calls

• e.g., open, read, write, stat, lseek,
ftruncate, ioctl 14

int fd = open(“t.txt”, O_RDONLY);

int fd = open(sym_str, O_RDONLY);

ssize t read(int fd, void *buf, size_t count) {
…
struct klee_fd *f = &fds[fd];
…
/* sym files are fixed size: don’t read

beyond the end. */
if (f−>off >= f−>size)

return 0;
count = min(count, f−>size − f−>off);
memcpy(buf, f−>file_data + f−>off, count);
f−>off += count;
return count;

}

Sketch of KLEE’s model for read()

KLEE implementation

15

Benchmarks

• 89 programs in GNU Coreutils (version 6.10), roughly 80,000 lines of
library code and 61,000 lines in the actual utilities, including ones

• Managing the file system (e.g., ls, dd, chmod)
• Displaying and configuring system properties (e.g., logname, printenv)
• Controlling command invocation (e.g., nohup, nice, env)
• Processing text files (e.g., sort, od, patch)

• Two other UNIX utility suites: Busybox, a widely-used distribution for
embedded systems, and the latest release for Minix

• The HiStar operating system kernel

16

Coverage

17

COREUTILS BUSYBOX
Coverage KLEE Devel. KLEE Devel.
(w/o lib) tests tests tests tests
100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30

Overall cov. 84.5% 67.7% 90.5% 44.8%
Med cov/App 94.7% 72.5% 97.5% 58.9%
Ave cov/App 90.9% 68.4% 93.5% 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges for KLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and
median coverage per application.

generates by only emitting tests cases for paths that hit a
new statement or branch in the main utility code. A user
that wants high library coverage can change this setting.

5.2 GNU COREUTILS
We now give KLEE coverage results for all 89 GNU
COREUTILS utilities.
Figure 4 breaks down the tools by executable lines

of code (ELOC), including library code the tool calls.
While relatively small, the tools are not toys — includ-
ing library code called, the smallest five have between
2K and 3K ELOC, over half (52) have between 3K and
4K, and ten have over 6K.
Previous work, ours included, has evaluated

constraint-based execution on a small number of
hand-selected benchmarks. Reporting results for the
entire COREUTILS suite, the worst along with the best,
prevents us from hand-picking results or unintentionally
cheating through the use of fragile optimizations.
Almost all tools were tested using the same command

(command arguments explained in § 2.1):
./run <tool-name> --max-time 60

--sym-args 10 2 2
--sym-files 2 8
[--max-fail 1]

As specified by the --max-time option, we ran each
tool for about 60minutes (some finished before this limit,
a few up to three minutes after). For eight tools where the
coverage results of these values were unsatisfactory, we
consulted the man page and increased the number and

0%

20%

40%

60%

80%

100%

C
ov

er
ag

e
(E

L
O

C
%

)
C

ov
er

ag
e

(E
L
O

C
%

)

1 25 50 75

Base + Fail
Base

Figure 5: Line coverage for each application with and without
failing system calls.

size of arguments and files. We found this easy to do,
so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
system calls (see § 4.2).

5.2.1 Line coverage results
The first two columns in Table 2 give aggregate line
coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
(aggregate) coverage across all tools of 84.5%. We get
100% line coverage on 16 tools, over 90% on 56 tools,
and over 80% on 77 tools (86.5% of all tools). The min-
imum coverage achieved on any tool is 62.6%.
We believe such high coverage on a broad swath of ap-

plications “out of the box” convincingly shows the power
of the approach, especially since it is across the entire
tool suite rather than focusing on a few particular appli-
cations.
Importantly, KLEE generates high coverage with few

test cases: for our non-failing runs, it needs a total of
3,321 tests, with a per-tool average of 37 (median: 33).
The maximum number needed was 129 (for the “[” tool)
and six needed 5. As a crudemeasure of path complexity,
we counted the number of static branches run by each test
case using gcov6 (i.e., an executed branch counts once
no matter how many times the branch ran dynamically).
The average path length was 76 (median: 53), the maxi-
mum was 512 and (to pick a random number) 160 were
at least 250 branches long.
Figure 5 shows the coverage KLEE achieved on each

tool, with and without failing system call invocations.
Hitting system call failure paths is useful for getting the
last few lines of high-coverage tools, rather than signif-
icantly improving the overall results (which it improves
from 79.9% to 84.5%). The one exception is pwd which
requires system call failures to go from a dismal 21.2%
to 72.6%. The second best improvement for a single tool

6In gcov terminology, a branch is a possible branch direction, i.e.
a simple if statement has two branches.

9

Coreutils bugs detected

18

−100%

−50%

0%

50%

100%

k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)
k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)

1 10 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

is a more modest 13.1% extra coverage on the df tool.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1
t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

relative improvement over the developers’ tests remains:
KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found
KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c
equal tab width (let’s call it T). Line 2665 computes
width = (T − input position mod T) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position
is positive, width will be less than T since 0 ≤

10

Busybox bugs detected

19

overhead made paths ran 7x to 220x more slowly than
native execution), the performance tradeoff for the oth-
ers is more nuanced. Assume we have a branch deep in
the program. Covering both true and false directions us-
ing traditional testing requires running the program from
start to finish twice: once for the true path and again
for the false. In contrast, while KLEE runs each instruc-
tion more slowly than native execution, it only needs to
run the instruction path before the branch once, since it
forks execution at the branch point (a fast operation given
its object-level copy-on-write implementation). As path
length grows, this ability to avoid redundantly rerunning
path prefixes gets increasingly important.
With that said, the reader should view the per-path

costs of random and KLEE as very crude estimates. First,
the KLEE infrastructure random uses to run tests adds
about 13ms of per-test overhead, as compared to around
1ms for simply invoking a program from a script. This
code runs each test case in a sandbox directory, makes
a clean environment, and creates various system objects
with random contents (e.g., files, pipes, tty’s). It then
runs the tested program with a watchdog to terminate
infinite loops. While a dedicated testing tool must do
roughly similar actions, presumably it could shave some
milliseconds. However, this fixed cost matters only for
short program runs, such as when the code exits with an
error. In cases where random can actually make progress
and explore deeper program paths, the inefficiency of re-
running path prefixes starts to dominate. Further, we con-
servatively compute the path completion rate for KLEE:
when its time expires, roughly 30% of the states it has
created are still alive, and we give it no credit for the
work it did on them.

5.3 BUSYBOX utilities
BUSYBOX is a widely-used implementation of standard
UNIX utilities for embedded systems that aims for small
executable sizes [1]. Where there is overlap, it aims to
replicate COREUTILS functionality, although often pro-
viding fewer features. We ran our experiments on a bug-
patched version of BUSYBOX 1.10.2. We ran the 75
utilities 8 in the BUSYBOX “coreutils” subdirectory
(14K lines of code, with another 16K of library code),
using the same command lines as when checking CORE-
UTILS, except we did not fail system calls.
As Table 2 shows, KLEE does even better than on

COREUTILS: over 90.5% total line coverage, on aver-
age covering 93.5% per tool with a median of 97.5%. It
got 100% coverage on 31 and over 90% on 55 utilities.
BUSYBOX has a less comprehensive manual test suite

than COREUTILS (in fact, many applications don’t seem
to have any tests). Thus, KLEE beats the developers tests

8We are actually measuring coverage on 72 files because several
utilities are implemented in the same file.

date -I
ls --co
chown a.a -
kill -l a
setuidgid a ""
printf "% *" B
od t1.txt
od t2.txt
printf %
printf %Lo
tr [
tr [=
tr [a-z
t1.txt: a
t2.txt: A
t3.txt: \t\n

cut -f t3.txt
install --m
nmeter -
envdir
setuidgid
envuidgid
envdir -
arp -Ainet
tar tf /
top d
setarch "" ""
<full-path>/linux32
<full-path>/linux64
hexdump -e ""
ping6 -

Figure 10: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in BUSYBOX.
When multiple applications crash because of the same shared
(buggy) piece of code, we group them by shading.

by roughly a factor of two: 90.5% total line coverage ver-
sus only 44.8% for the developers’ suite. The developers
do better on only one benchmark, cp.

5.4 Bug-finding: MINIX + all BUSYBOX tools

To demonstrate KLEE’s applicability to bug finding, we
used KLEE to check all 279 BUSYBOX tools and 84
MINIX tools [4] in a series of short runs. These 360+
applications cover a wide range of functionality, such
as networking tools, text editors, login utilities, archiv-
ing tools, etc. While the tests generated by KLEE dur-
ing these runs are not sufficient to achieve high coverage
(due to incomplete modeling), we did find many bugs
quickly: 21 bugs in BUSYBOX and another 21 in MINIX
have been reported (many additional reports await in-
spection). Figure 10 gives the command lines for the
BUSYBOX bugs. All bugs were memory errors and were
fixed promptly, with the exception of date which had
been fixed in an unreleased tree. We have not heard back
from the MINIX developers.

5.5 Checking tool equivalence

Thus far, we have focused on finding generic errors that
do not require knowledge of a program’s intended be-
havior. We now show how to do much deeper checking,
including verifying full functional correctness on a finite
set of explored paths.
KLEE makes no approximations: its constraints have

perfect accuracy down to the level of a single bit. If
KLEE reaches an assert and its constraint solver states
the false branch of the assert cannot execute given the
current path constraints, then it has proved that no value
exists on the current path that could violate the assertion,

12

Inconsistencies between Coreutils and
Busybox

20

Input BUSYBOX COREUTILS
comm t1.txt t2.txt [does not show difference] [shows difference]
tee - [does not copy twice to stdout] [does]
tee "" <t1.txt [infinite loop] [terminates]
cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"
tr [duplicates input on stdout] "missing operand"
[0 ‘‘<’’ 1] "binary operator expected"
sum -s <t1.txt "97 1 -" "97 1"
tail -2l [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
ls --color-blah [accepts] [rejects]
t1.txt: a t2.txt: b

Table 3: Very small subset of the mismatches KLEE found between the BUSYBOX and COREUTILS versions of equivalent utili-
ties. The first three are serious correctness errors; most of the others are revealing missing functionality.

Test Random KLEE ELOC
With Disk 50.1% 67.1% 4617
No Disk 48.0% 76.4% 2662

Table 4: Coverage on the HISTAR kernel for runs with up to
three system calls, configured with and without a disk. For
comparison we did the same runs using random inputs for one
million trials.

5.6 The HiStar OS kernel

We have also applied KLEE to checking non-application
code by using it to check the HiStar [39] kernel. We used
a simple test driver based on a user-mode HISTAR ker-
nel. The driver creates the core kernel data structures and
initializes a single process with access to a single page of
user memory. It then calls the test function in Figure 12,
which makes the user memory symbolic and executes a
predefined number of system calls using entirely sym-
bolic arguments. As the system call number is encoded
in the first argument, this simple driver effectively tests
all (sequences of) system calls in the kernel.
Although the setup is restrictive, in practice we have

found that it can quickly generate test cases— sequences
of system call vectors and memory contents — which
cover a large portion of the kernel code and uncover
interesting behaviors. Table 4 shows the coverage ob-
tained for the core kernel for runs with and without a
disk. When configured with a disk, a majority of the un-
covered code can only be triggeredwhen there are a large
number of kernel objects. This currently does not happen
in our testing environment; we are investigating ways to
exercise this code adequately during testing. As a quick
comparison, we ran one million random tests through
the same driver (similar to § 5.2.4). As Table 4 shows,
KLEE’s tests achieve significantly more coverage than
random testing both for runs with (+17.0%) and without
(+28.4%) a disk.

1 : static void test(void *upage, unsigned num calls) {
2 : make symbolic(upage, PGSIZE);
3 : for (int i=0; i<num calls; i++) {
4 : uint64 t args[8];
5 : for (int j=0; j<8; j++)
6 : make symbolic(&args[j], sizeof(args[j]));
7 : kern syscall(args[0], args[1], args[2], args[3],
8 : args[4], args[5], args[6], args[7]);
9 : }
10: sys self halt();
11: }

Figure 12: Test driver for HISTAR: it makes a single page of
user memory symbolic and executes a user-specified number
of system calls with entirely symbolic arguments.

KLEE’s constraint-based reasoning allowed it to find a
tricky, critical security bug in the 32-bit version of HIS-
TAR. Figure 13 shows the code for the function contain-
ing the bug. The function safe addptr is supposed
to set *of to true if the addition overflows. However,
because the inputs are 64 bit long, the test used is insuf-
ficient (it should be (r < a) || (r < b)) and the
function can fail to indicate overflow for large values of
b.
The safe addptr function validates user memory

addresses prior to copying data to or from user space. A
kernel routine takes a user address and a size and com-
putes if the user is allowed to access the memory in that
range; this routine uses the overflow to prevent access
when a computation could overflow. This bug in com-
puting overflow therefore allows a malicious process to
gain access to memory regions outside its control.

6 Related Work
Many recent tools are based on symbolic execution [11,
14–16, 20–22, 24, 26, 27, 36]. We contrast how KLEE
deals with the environment and path explosion problems.
To the best of our knowledge, traditional symbolic ex-

14

Inconsistencies between Coreutils and
Busybox: how?

21

unsigned mod_opt(unsigned x, unsigned y){
if((y&-y)==y) // power of two?

return x& (y-1);
else

return x%y;
}

unsigned mod_opt(unsigned x, unsigned y){
return x%y;

}

int main(){
unsigned x, y;
make_symbolic(&x, sizeof(x));
make_symbolic(&y, sizeof(y));
assert(mod(x,y) == mod_opt(x,y));
return 0;

}

Every assertion can be
treated as a branch
statement with two

outgoing branches (i.e., hold
or not); symbolic execution

will try to cover both!

Implementation 1 Implementation 2

Discussion

• Strengths
• Limitations
• Future work

22

This class

• KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs (OSDI'08)

• Hybrid Concolic Testing (ICSE'07)

23

Symbolic execution: coverage problem

24

Symbolic execution may not reach deep into the
execution tree. Specially when encountering loops

Solution: concolic execution

• Generate a random seed input to dive into the
program execution tree

• Concretely execute the program with the
random seed input and collect the path
constraint, e.g., a && b && c

• In the next iteration, negate the last conjunct to
obtain the constraint: a && b && !c

• Solve it to get input to the path which matches
all the branch decisions except the last one 25

Concolic=Concrete+Symbolic

Execution path space

a

b

c !c

Concolic execution

Constraints to solve Data Observed constraints

26

void CoverMe(int[] a) {
if (a == null)

return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

null a==null
a!=null &&
!(a.Length>0)

{}a!=null

a!=null &&
a.Length>0

{1} a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

{123…} a!=null &&
a.Length>0 &&
a[0]==1234567890

Choose next patch

Solve Monitor

a==null

a.Length>0

a[0]==123…

F T

TF

F T

Code under test

Executed paths
DONE, no path left!

Concretized!

Concolic execution: another example

Constraints to solve Data Observed constraints

27

void CoverMe(int[] a, int b) {
if (a == null)

return;
if (a.Length > 0)

if (a[0] == hash(b))
throw new Exception("bug");

}

null, 0 a==null
a!=null &&
!(a.Length>0)

{}, 0a!=null

a!=null &&
a.Length>0

{1}, 0 a!=null &&
a.Length>0 &&
a[0]!=hash(b)

a!=null &&
a.Length>0 &&
a[0]==hash(0)

{434…}, 0 a!=null &&
a.Length>0 &&
a[0]==434…

Choose next patch

Solve Monitor

a==null

a.Length>0

a[0]==hash(b)

F T

TF

F T

Code under test

Executed paths
DONE, no path left!

Limitations

28

Execution path space

Explored by
concolic execution

Limitations: a comparative view

29

Concolic testing: wide and shallow Random testing: narrow and deep

Limitations: example
• COVER_ME can be hit on an input sequence

• s = ‘UIUC’
• c : ‘:’ ‘\n’

• Random testing can get to state = 2, but
difficult to get ‘UIUC’ as a sequence

• Probability: 1/(28)4 » 2.3X10-10

• Concolic testing can generate ‘UIUC’, but
explores many paths to state = 2

30

Example () {
state = 0;
while(1) {

s = input();
c = input();
if(c==‘:’ && state==0)

state=1;
else if(c==‘\n’ && state==1)

state=2;
else if (s[0]==‘U’ &&

s[1]==‘I’ &&
s[2]==‘U’ &&
s[3]==‘C’ &&
state==2) {

COVER_ME:;
}

}
}

Similar code structure in
• Text editors (vi)
• Parsers (lexer)
• Event-driven programs (GUI)

Hybrid concolic testing

31

while (not required coverage) {
while (not saturation)

perform random testing;
Checkpoint;
while (not increase in coverage)

perform concolic testing;
Restore;

}

Interleave random testing and concolic testing
for deep&broad search to increase coverage

Hybrid concolic testing: example
• Random phase: ‘$’, ‘&’, ‘-’, ‘6’, ‘:’, ‘%’, ‘^’, ‘\n’,

‘x’, ‘~’ …
• Saturates after many (~10000) iterations
• In less than 1 second
• COVER_ME is not reached

• Concolic phase: s[0]=‘U’, s[1]=‘I’, s[2]=‘U’,
s[3]=‘C’

• Reaches COVER_ME!

32

Example () {
state = 0;
while(1) {

s = input();
c = input();
if(c==‘:’ && state==0)

state=1;
else if(c==‘\n’ && state==1)

state=2;
else if (s[0]==‘U’ &&

s[1]==‘I’ &&
s[2]==‘U’ &&
s[3]==‘C’ &&
state==2) {

COVER_ME:;
}

}
}

Implementation

• An extension on the CUTE:
• A concolic execution engine for C
• Code instrumentation via CIL, a framework for parsing and transforming C

programs1

• Constraint solving via lp_solve, a library for integer linear programming2

33

https://github.com/cil-project/cil
http://lpsolve.sourceforge.net/5.5/

1
2

https://github.com/cil-project/cil
http://lpsolve.sourceforge.net/5.5/

Testing red-black tree

34

typedef struct rbtree {
int i;
struct rbtree *left = NULL;
struct rbtree *right = NULL;
char color;

} rbtree;

void testme() {
int toss;
rbtree *elem, *tmp, *root = NULL;

while(1) {
CUTE_input(toss);
if(toss<0) toss = -toss;
toss = toss % 5;
switch(toss) {

case 1:
rbtree_len(root);
break;

case 2:
elem = (rbtree *)malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_add_if_not_member(&root,elem,&tmp);
break;

case 3:
elem = (rbtree *)malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_delete_if_member(&root,elem,&tmp);
break;

case 4:
elem = (rbtree *)malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_find_member(root,elem);
break;

default:
elem = (rbtree *)malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_add(&root,elem);
break;

} } }

Figure 3. Driver for testing red-black tree

the absolute branch coverage will be very low and the num-
ber will not reflect the true branch coverage within the red
black tree only. In the case of the VIM editor, we do not
symbolically track all potential inputs, such as reading from
a file. Therefore, we will not able to exercise many func-
tions whose behaviors depend on such non-tracked inputs.
By using relative branch coverage, we ignore the branches
of such unreachable functions.

4.1 Red Black Tree

In our first experiment, we considered a widely-used
implementation of the red-black tree data structure having
around 500 lines of C code. We adopted the unit testing
methodology to test this implementation. In particular, we
adopted the approach of generating data structures using a
sequence of function calls [28, 33]. This approach is based

Branch Coverage in Percentage
Seed Random Concolic Hybrid Concolic

Testing Testing Testing
523 32.27 52.48 66.67
7487 32.27 52.48 67.02
6726 32.27 52.48 66.67
5439 32.27 52.48 67.73
4494 32.27 52.48 69.86

Average 32.27 52.48 67.59

Table 1. Results of Testing Red-Black Tree

on the following observation: a data structure implements
functions for several basic operations such as creating an
empty structure, adding an element to the structure, remov-
ing an element from the structure, and checking if an ele-
ment is in the structure. A sequence of these interface oper-
ations can be used to exhaustively test the implementation.
Experimental Setup. To generate legal sequences of func-
tion calls of the red-black tree we used the manually writ-
ten test driver shown in Figure 3. The test driver runs in a
loop and calls a public function of the red-black tree in each
iteration. The function to be called in each iteration is de-
termined by an input variable toss. We biased the random
testing so that each function call has an equal probability
of being called in an iteration. We compared pure random
testing, pure concolic testing, and hybrid concolic testing
on the test driver using five different seeds. We allotted a
time of 30 minutes for each testing experiment.
Results. Table 1 shows the results of testing the red-black
tree implementation. The first column gives the initial seed
for the random number generator used by each of the test-
ing methods. The next three columns give the percentage
of branch coverage for each of the testing methods. The
last row gives the average branch coverage for each of the
methods.
The table shows that the average branch coverage at-

tained by pure random testing is low compared to both
pure concolic testing and hybrid concolic testing. More-
over the branch coverage for random testing saturated at
32.27% for each of the five seeds. Random testing failed
to attain high branch coverage because the probability of
generating two random numbers having the same value is
very small. As such random testing was not able to gen-
erate random numbers that are already in the tree. There-
fore, the functions rbtree delete if member and
rbtree add if not member were not explored com-
pletely.
In concolic testing we bounded the number of inputs

along each path by 10. This was required because the test
driver has an infinite loop. Note that with the increase in the
number of inputs along each path, the number of distinct
feasible execution paths increases exponentially. There-

Testing Vim editor

35

fore, to be able to complete the exhaustive search of all the
paths in a reasonable amount of time using concolic testing,
we bounded the number of inputs along each path by 10.
Then concolic testing gave us an average branch coverage of
52.48%. Although this number is better than that of random
testing, we didn’t manage to get better coverage. This is be-
cause to attain better coverage we need longer sequences
of function call. This was also observed by D’Amorim et
al. [9]. However, longer sequences cannot be completely
tested by concolic testing due to the exponential blow-up in
the number of paths.
To address this problem, hybrid concolic testing proved

ideal. This is because the random testing mode of hybrid
concolic testing generated long function call sequences.
This resulted in the creation of large random red-black trees.
After that the concolic testing mode was able to explore
more execution paths. As a result hybrid concolic testing
attained an average branch coverage of 67.59%, which was
the highest of all the testing modes. Note that the branch
coverage is still less than 100%. After investigating the
reason for this, we found that the code contains a number
of assert statements that were never violated and a number
of predicates that are redundant and can be removed from
the conditionals. Nevertheless, the experiment supports the
claim that hybrid concolic testing, which combines the best
of both worlds, can attain better branch coverage than pure
random testing and pure concolic testing.

4.2 The VIM Editor

We next illustrate the use of hybrid concolic testing on
VIM, a popular text editor [27]. The VIM editor has 150K
lines of C code. We want to generate test inputs for VIM
for maximal branch coverage. Unlike the unit testing ap-
proaches adopted by CUTE or DART, we targeted to test
VIM as a whole system. This made the testing task chal-
lenging as the number of possible distinct execution paths
that can be exhibited by VIM as a whole system is astro-
nomically large.
VIM is a modal editor, that is, it has one mode for en-

tering text and a separate mode for entering commands. It
starts in the command mode, where the user can enter edi-
tor commands to move cursors, delete words or lines. When
certain keys are pressed (“a” or “i”), the editor enters into
insert mode, where the user can enter text. From the insert
mode, the user goes back to command mode by pressing
the ESC key. Further, in command mode, by pressing “:”
the editor goes to a command line mode, where the next
sequence of characters pressed by the user has special com-
mand significance to the editor (for example, “:” followed
by “w” writes the current buffer back to disk). Similarly,
pressing “/” in command mode takes the editor to a search
mode, where the next sequence of characters typed by the

Branch Coverage in Percentage
Seed Random Concolic Hybrid Concolic

Testing Testing Testing
877443 8.01 21.43 41.93
67532 8.16 21.43 40.39
98732 8.72 21.43 33.67
32761 7.80 21.43 35.45
28683 9.75 21.43 40.53

Average 8.17 21.43 37.86

Table 2. Results of Testing the VIM Test Editor

user (up to a newline) is interpreted as a literal string to be
searched for in the text buffer. There is also an exmode for
more complex command lines. There are many other modes
VIM, and many other commands. For our purposes of expo-
sition, we note that VIM has the characteristics of the exam-
ple program in Figure 1: in order to hit certain branches, one
has to take the program to a certain state, and then provide
a precise sequence of inputs (which makes sense as a mode
transfer followed by a command to the editor). For exam-
ple, if we start VIM with an empty buffer, then the com-
mand dd (to delete a line) is not enabled. The command
dd gets enabled after we have switched to the insert mode
through the command i, entered some text into the buffer,
and then switched to the command mode by pressing ESC.
The random testing phase of hybrid concolic testing can
enter garbage text into the buffer easily thus enabling the
line deletion command. The concolic testing phase can then
generate the sequence ESC dd during exhaustive search.
Experimental Setup. To set up the testing experiment,
we first identified the function in the VIM code that re-
turns a 16-bit unsigned integer whenever the user presses
a key. This function, namely safe vgetc, provides in-
puts to VIM in the normal mode and the insert mode. In
the VIM source code, we replaced safe vgetc by the
CUTE input function CUTE input(). CUTE input()
provides random values to VIM in the random testing mode
and provides values computed through constraint solving in
the concolic testing mode. We observed that safe vgetc
does not provide input to VIM in the Ex mode and we failed
to identify the exact low-level function that provides input
to VIM in the Ex mode. As such in our testing experiments
we were restricted to the exploration of behaviors of VIM
in the insert mode and the normal mode only. This in turn
affected the branch coverage that we obtained in the exper-
iments.
We compared pure random testing, pure concolic test-

ing, and hybrid concolic testing on the VIM source code
using five different random seeds. In each experiment we
restricted the total testing time to 60 minutes.

Results. Table 2 shows the results of testing the VIM text

Discussion

• Strengths
• Limitations
• Future work

36

Symbolic execution engines you may want to
try
• C family: KLEE (http://llvm.org/)
• C#: Pex/IntelliTest (http://research.microsoft.com/en-us/projects/pex/)
• Java: Java PathFinder (https://github.com/SymbolicPathFinder/jpf-symbc)
• JavaScript: Jalangi2 (https://github.com/Samsung/jalangi2)
• Binaries (x86, ARM, ...): S2E (https://s2e.systems/)

37

http://llvm.org/
http://research.microsoft.com/en-us/projects/pex/
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/Samsung/jalangi2
https://s2e.systems/

Further readings

• Koushik Sen, Darko Marinov, Gul Agha. CUTE: A Concolic Unit Testing
Engine for C. 2005, FSE.

• Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill,
Dawson R. Engler. EXE: Automatically Generating Inputs of Death.
2006, CCS.

• Patrice Godefroid, Michael Y. Levin, David Molnar. Automated
Whitebox Fuzz Testing. 2008, NDSS.

38

Thanks and stay safe!

39

