
Advanced Software Testing and
Debugging (CS598)
Spec-based Testing

Lingming Zhang
Fall 2020



Spec-based test generation
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Program

// specification for removing from binary tree
/*@ public normal_behavior

@ requires has(n); // precondition 
@ ensures !has(n); // postcondition @*/

…

Generated tests

G
enerate

Execute



This class

• Korat: Automated Testing Based on Java Predicates (ISSTA'02)

• TestEra: A Novel Framework for Automated Testing of Java Programs 
(ASE'01)
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What specifications to use?

• Formal specifications in specifically designed languages (e.g., Z and Alloy)
• Precise and concise
• Hard to write (steep learning curve)

• Korat directly utilizes Java predicates for encoding the specifications
• Some existing formal specifications (e.g., JML) can be automatically transformed to

Java
• Programmers can also use the full expressiveness of the Java language to write 

specifications!
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Korat predicate
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class BinaryTree {
private Node root; // root node
static class Node {

private Node left; // left child
private Node right; // right child

}
…

}

BinaryTree Program

public boolean repOk() {
if (root == null) return true; // empty tree
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

if (!visited.add(current.left)) return false; // tree has no cycle
workList.add(current.left);

}
if (current.right != null) {

if (!visited.add(current.right)) return false; // tree has no cycle
workList.add(current.right);

}
}
return true; // valid non-empty tree

}

Korat RepOK predicate



Finitization
• Finitization: a set of bounds that limits the size of the inputs
• Specifies the number of objects for each used class

• A set of objects of one class forms a class domain
• Specifies the set of classes whose objects each field can point to

• The set of values a field can take forms its field domain 
• Note that a field domain is a union of some class domains
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public static Finitization finBinaryTree(int NUM_Node) {
Finitization f = new Finitization(BinaryTree.class);
ObjSet nodes = f.createObjects("Node", NUM_Node);
nodes.add(null);
f.set("root", nodes);
f.set("Node.left", nodes);
f.set("Node.right", nodes);
return f;

}

Generated finitization description for BinaryTree



State space
• finBinaryTree with NUM_Node=3

• Each field with type Node includes 4 possible choices:
• {null, N0, N1, N2}

• Total number of possible tests for a tree with 3 nodes:
• 4*(4*4)3=214=16,384

• Total number of possible tests for a tree with n nodes:
• (n+1)*((n+1)*(n+1))n=(n+1)2n+1
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State space: more examples

• The number of “trees” explodes rapidly!
• n=3: over 16,000 “tests”
• n=4: over 1,900,000 “tests”
• n=5: over 360,000,000 “trees”

• Limit us to only very small input sizes

8

Are they all valid tests?



State space: examples
• finBinaryTree with NUM_Node=3
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State space: vector representation

• To systematically explore the state space, Korat orders all the elements in 
every class domain and every field domain
• The ordering in each field domain is consistent with the orderings in the class 

domains

• Each candidate input is then a vector of field domain indices!
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N0

root

N1 N2

left right

null null

left right

null null

left right

BinaryTree N0 N1 N2

N0
rightleft

N2N1

Class domain: [N0, N1, N2]
Field domain: [null, N0, N1, N2]

Test: [ 1， 2, 3, 0, 0, 0, 0 ]



Search

• The search starts with the candidate vector set to all zeros

• Then, iterate through the following steps:
• Construct the actual test based on the current vector
• Invoke repOK() to check the test validity and record accessed field ordering
• Increment the field domain index for the last field in the recorded field ordering

• If the index exceeds the limit, reset it to 0 and increment the previous field in field ordering
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Search: why field ordering accessed matters

• Any test vectors of the form [1,2,2,?,?,?,?] are invalid!

• Keeping the accessed field ordering enables us to prune all such tests
• 44 tests pruned for this single step!
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Search: why field ordering accessed matters
(cont.)

• Only the root is accessed since it is null
• Any test vectors of the form [0,?,?,?,?,?,?] do not need to be repeated!

• Keeping the accessed field ordering enables us to prune all such tests
• 25% of all tests pruned by this single test input!
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Search: example
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… Can we further prune the state space?



Isomorphism

• O: O1 ∪…∪ On , the sets of objects from n classes

• P: the set consisting of null and all values of primitive types that
objects in O can reach

• Two candidates, C and C’, are isomorphic iff there is a permutation π
on O, mapping objects from Oi to objects from Oi for all 1 ≤ i ≤ n, such 
that: ∀o, o’ ∈ O. ∀f ∈ fields(o). ∀p ∈ P.
• o.f==o’ in C iff π(o).f==π(o’) in C’ AND
• o.f==p in C iff π(o).f==p in C’
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Two data structures are isomorphic if a
permutation exists between the two that preserves structure



Isomorphism: examples

They are isomorphic!
We just need one of them… 16

N0

root

N1 N2

left right

null null

left right

null null

left right

BinaryTree N0 N1 N2

N0
rightleft

N2N1

N0 N2 N1 null null null null N0
rightleft

N1N2Test2: [ 1, 3, 2, 0, 0, 0, 0 ]

Test1: [ 1, 2, 3, 0, 0, 0, 0 ]

N1 null null N0 N2 null null N1
rightleft

N2N0Test3: [ 2, 0, 0, 1, 3, 0, 0 ]



Nonisomorphism

• Algorithm: only allow an index 
into a given class domain to 
exceed previous indices into 
that domain by 1
• Initial prior index: -1

• Example: assume we are
generating tests with three
fields from the same class
domain
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Nonisomorphism: more examples
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Test1: [ 1, 2, 3, 0, 0, 0, 0 ]

N1 null null N0 N2 null null N1
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Korat results for BinaryTree with up to 3 nodes

• Only 9 valid tests out of 214 possibilities!
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Test generation
• Valid test cases for a method must satisfy its precondition

• Korat uses a class that represents method’s inputs:
• One field for each parameter of the method (including the implicit this)
• A repOk predicate that uses the precondition to check the validity of method’s 

inputs

• Given a finitization, Korat then generates all inputs with repOk=true
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class BinaryTree_remove {
BinaryTree This; // the implicit "this"
BinaryTree.Node n; // the Node parameter
//@ invariant repOk();
public boolean repOk() {

return This.has(n);
}

}

public static Finitization
finBinaryTree_remove(int NUM_Node) {
Finitization f = new Finitization(BinaryTree_remove.class);
Finitization g = BinaryTree.finBinaryTree(NUM_Node);
f.includeFinitization(g);
f.set("This", g.getObjects(BinaryTree.class));
f.set("n", /***/);
return f;

}
Test generation for remove(Node n) 



Test oracle

• To check partial correctness of a method, a simple test oracle could 
just invoke repOk in the post-state to check the class invariant

• The current Korat implementation uses the JML tool-set to 
automatically generate test oracles from method postconditions
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Testing activity JUnit JML+JUnit Korat
Generating tests X

Generating oracle X X

Running tests X X X

//@ public invariant repOk(); //class invariant
/*@ public normal_behavior

@ requires has(n); // precondition 
@ ensures !has(n); // postcondition @*/

public void remove(Node n) {
...

}

JML specification for removing from binary tree



Benchmark subjects
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benchmark package finitization parameters
BinaryTree korat.examples NUM Node
HeapArray korat.examples MAX size, MAX length,

MAX elem
LinkedList java.util MIN size, MAX size,

NUM Entry, NUM Object
TreeMap java.util MIN size, NUM Entry,

MAX key, MAX value
HashSet java.util MAX capacity, MAX count,

MAX hash, loadFactor
AVTree ins.namespace NUM AVPair, MAX child,

NUM String

Table 2: Benchmarks and finitization parameters. Each bench-
mark is named after the class for which data structures are gen-
erated; the structures also contain objects from other classes.

5.1 Benchmarks
Table 2 lists the benchmarks for which we show Korat’s perfor-
mance. BinaryTree and HeapArray are presented in Section 2.
(Additionally, HeapArrays are similar to array-based stacks and
queues, as well as java.util.Vectors.) LinkedList is the
implementation of linked lists in the Java Collections Framework,
a part of the standard Java libraries. This implementation uses
doubly-linked, circular lists that have a size field and a header
node as a sentinel node. (Linked lists also provide methods that al-
low them to be used as stacks and queues.) TreeMap implements
the Map interface using red-black trees [8]. This implementation
uses binary trees with parent fields. Each node (implemented with
inner class Entry) also has a key and a value. (Setting all value
fields to null corresponds to the set implementation in java.-
util.TreeSet.) HashSet implements the Set interface, backed
by a hash table [8]. This implementation builds collision lists for
buckets with the same hash code. The loadFactor parameter de-
termines when to increase the size of the hash table and rehash the
elements.

AVTree implements the intentional name trees that describe prop-
erties of services in the Intentional Naming System (INS) [1], an
architecture for service location in dynamic networks. Each node in
an intentional name has an attribute, a value, and a set of child
nodes. INS uses attributes and values to classify services based on
their properties. The names of these properties are implemented
with arbitrary Strings except that "*" is a wildcard that matches
all other values. The finitization bounds the number of AVPair ob-
jects that implement nodes, the number of children for each node,
and the total number of Strings (including the wildcard).

5.2 Korat’s test case generation
Table 3 presents the results for generating valid structures with our
Korat implementation. For each benchmark, all finitization param-
eters are set to the same (size) value (except the loadFactor pa-
rameter for HashSet, which is set to default 0.75). For a range
of size values, we tabulate the time that Korat takes to generate all
valid structures, the number of structures generated, the number of
candidate structures checked by repOk, and the size of the state
space.

Korat can generate all structures even for very large state spaces
because the search pruning allows Korat to explore only a tiny
fraction of the state space. The ratios of the number of candidate

benchmark size time structures candidates state
(sec) generated considered space

8 1.53 1430 54418 253

9 3.97 4862 210444 263

BinaryTree 10 14.41 16796 815100 272

11 56.21 58786 3162018 282

12 233.59 208012 12284830 292

6 1.21 13139 64533 220

HeapArray 7 5.21 117562 519968 225

8 42.61 1005075 5231385 229

8 1.32 4140 5455 291

9 3.58 21147 26635 2105

LinkedList 10 16.73 115975 142646 2120

11 101.75 678570 821255 2135

12 690.00 4213597 5034894 2150

7 8.81 35 256763 292

TreeMap 8 90.93 64 2479398 2111

9 2148.50 122 50209400 2130

7 3.71 2386 193200 2119

8 16.68 9355 908568 2142

HashSet 9 56.71 26687 3004597 2166

10 208.86 79451 10029045 2190

11 926.71 277387 39075006 2215

AVTree 5 62.05 598358 1330628 250

Table 3: Korat’s performance on several benchmarks. All fini-
tization parameters are set to the size value. Time is the elapsed
real time in seconds for the entire generation. State size is
rounded to the nearest smaller exponent of two.

structures considered and the size of the state spaces show that the
key to effective pruning is backtracking based on fields accessed
during repOk’s executions. Without backtracking, and even with
isomorphism optimization, Korat would generate infeasibly many
candidates. Isomorphism optimization further reduces the number
of candidates, but it mainly reduces the number of valid structures.

For BinaryTree, LinkedList, TreeMap, and HashSet (with the
loadFactor parameter of 1), the numbers of nonisomorphic struc-
tures appear in the Sloane’s On-Line Encyclopedia of Integer Se-
quences [30]. For all these benchmarks, Korat generates exactly
the actual number of structures.

5.2.1 Comparison with Alloy Analyzer
We next compare Korat’s test case generation with that of the Alloy
Analyzer (AA) [16], an automatic tool for analyzing Alloy models.
Alloy [17] is a first-order, declarative language based on relations.
Alloy is suitable for modeling structural properties of software. Al-
loy models of several data structures can be found in [22]. These
models specify class invariants in Alloy, which correspond to re-
pOk methods in Korat, and also declare field types, which corre-
sponds to setting field domains in Korat finitizations.

Given a model of a data structure and a scope—a bound on the
number of atoms in the universe of discourse—AA can generate
all (mostly nonisomorphic) instances of the model. An instance
valuates the relations in the model such that all constraints of the
model are satisfied. Setting the scope in Alloy corresponds to set-
ting the finitization parameters in Korat. AA translates the input
Alloy model into a boolean formula and uses an off-the-shelf SAT
solver to find a satisfying assignment to the formula. Each such
assignment is translated back to an instance of the input model.
AA adds symmetry-breaking predicates [29] to the boolean for-
mula so that different satisfying assignments to the formula repre-
sent (mostly) nonisomorphic instances of the input model.

130



Overall results

23

benchmark package finitization parameters
BinaryTree korat.examples NUM Node
HeapArray korat.examples MAX size, MAX length,

MAX elem
LinkedList java.util MIN size, MAX size,

NUM Entry, NUM Object
TreeMap java.util MIN size, NUM Entry,

MAX key, MAX value
HashSet java.util MAX capacity, MAX count,

MAX hash, loadFactor
AVTree ins.namespace NUM AVPair, MAX child,

NUM String

Table 2: Benchmarks and finitization parameters. Each bench-
mark is named after the class for which data structures are gen-
erated; the structures also contain objects from other classes.

5.1 Benchmarks
Table 2 lists the benchmarks for which we show Korat’s perfor-
mance. BinaryTree and HeapArray are presented in Section 2.
(Additionally, HeapArrays are similar to array-based stacks and
queues, as well as java.util.Vectors.) LinkedList is the
implementation of linked lists in the Java Collections Framework,
a part of the standard Java libraries. This implementation uses
doubly-linked, circular lists that have a size field and a header
node as a sentinel node. (Linked lists also provide methods that al-
low them to be used as stacks and queues.) TreeMap implements
the Map interface using red-black trees [8]. This implementation
uses binary trees with parent fields. Each node (implemented with
inner class Entry) also has a key and a value. (Setting all value
fields to null corresponds to the set implementation in java.-
util.TreeSet.) HashSet implements the Set interface, backed
by a hash table [8]. This implementation builds collision lists for
buckets with the same hash code. The loadFactor parameter de-
termines when to increase the size of the hash table and rehash the
elements.

AVTree implements the intentional name trees that describe prop-
erties of services in the Intentional Naming System (INS) [1], an
architecture for service location in dynamic networks. Each node in
an intentional name has an attribute, a value, and a set of child
nodes. INS uses attributes and values to classify services based on
their properties. The names of these properties are implemented
with arbitrary Strings except that "*" is a wildcard that matches
all other values. The finitization bounds the number of AVPair ob-
jects that implement nodes, the number of children for each node,
and the total number of Strings (including the wildcard).

5.2 Korat’s test case generation
Table 3 presents the results for generating valid structures with our
Korat implementation. For each benchmark, all finitization param-
eters are set to the same (size) value (except the loadFactor pa-
rameter for HashSet, which is set to default 0.75). For a range
of size values, we tabulate the time that Korat takes to generate all
valid structures, the number of structures generated, the number of
candidate structures checked by repOk, and the size of the state
space.

Korat can generate all structures even for very large state spaces
because the search pruning allows Korat to explore only a tiny
fraction of the state space. The ratios of the number of candidate

benchmark size time structures candidates state
(sec) generated considered space

8 1.53 1430 54418 253

9 3.97 4862 210444 263

BinaryTree 10 14.41 16796 815100 272

11 56.21 58786 3162018 282

12 233.59 208012 12284830 292

6 1.21 13139 64533 220

HeapArray 7 5.21 117562 519968 225

8 42.61 1005075 5231385 229

8 1.32 4140 5455 291

9 3.58 21147 26635 2105

LinkedList 10 16.73 115975 142646 2120

11 101.75 678570 821255 2135

12 690.00 4213597 5034894 2150

7 8.81 35 256763 292

TreeMap 8 90.93 64 2479398 2111

9 2148.50 122 50209400 2130

7 3.71 2386 193200 2119

8 16.68 9355 908568 2142

HashSet 9 56.71 26687 3004597 2166

10 208.86 79451 10029045 2190

11 926.71 277387 39075006 2215

AVTree 5 62.05 598358 1330628 250

Table 3: Korat’s performance on several benchmarks. All fini-
tization parameters are set to the size value. Time is the elapsed
real time in seconds for the entire generation. State size is
rounded to the nearest smaller exponent of two.

structures considered and the size of the state spaces show that the
key to effective pruning is backtracking based on fields accessed
during repOk’s executions. Without backtracking, and even with
isomorphism optimization, Korat would generate infeasibly many
candidates. Isomorphism optimization further reduces the number
of candidates, but it mainly reduces the number of valid structures.

For BinaryTree, LinkedList, TreeMap, and HashSet (with the
loadFactor parameter of 1), the numbers of nonisomorphic struc-
tures appear in the Sloane’s On-Line Encyclopedia of Integer Se-
quences [30]. For all these benchmarks, Korat generates exactly
the actual number of structures.

5.2.1 Comparison with Alloy Analyzer
We next compare Korat’s test case generation with that of the Alloy
Analyzer (AA) [16], an automatic tool for analyzing Alloy models.
Alloy [17] is a first-order, declarative language based on relations.
Alloy is suitable for modeling structural properties of software. Al-
loy models of several data structures can be found in [22]. These
models specify class invariants in Alloy, which correspond to re-
pOk methods in Korat, and also declare field types, which corre-
sponds to setting field domains in Korat finitizations.

Given a model of a data structure and a scope—a bound on the
number of atoms in the universe of discourse—AA can generate
all (mostly nonisomorphic) instances of the model. An instance
valuates the relations in the model such that all constraints of the
model are satisfied. Setting the scope in Alloy corresponds to set-
ting the finitization parameters in Korat. AA translates the input
Alloy model into a boolean formula and uses an off-the-shelf SAT
solver to find a satisfying assignment to the formula. Each such
assignment is translated back to an instance of the input model.
AA adds symmetry-breaking predicates [29] to the boolean for-
mula so that different satisfying assignments to the formula repre-
sent (mostly) nonisomorphic instances of the input model.
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Korat vs. TestEra
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Korat Alloy Analyzer
benchmark size struc. total first inst. total first

gen. time struc. gen. time inst.
3 5 0.56 0.62 6 2.63 2.63
4 14 0.58 0.62 28 3.91 2.78

BinaryTree 5 42 0.69 0.67 127 24.42 4.21
6 132 0.79 0.66 643 269.99 6.78
7 429 0.97 0.62 3469 3322.13 12.86
3 66 0.53 0.58 78 11.99 6.20

HeapArray 4 320 0.57 0.59 889 171.03 16.13
5 1919 0.73 0.63 1919 473.51 39.58
3 5 0.58 0.60 10 2.61 2.39
4 15 0.55 0.65 46 3.47 2.77

LinkedList 5 52 0.57 0.65 324 14.09 3.51
6 203 0.73 0.61 2777 148.73 5.74
7 877 0.87 0.61 27719 2176.44 10.51
4 8 0.75 0.69 16 12.10 6.35

TreeMap 5 14 0.87 0.88 42 98.09 18.08
6 20 1.49 0.98 152 1351.50 50.87
2 2 0.55 0.65 2 2.35 2.43

AVTree 3 84 0.65 0.61 132 4.25 2.76
4 5923 1.41 0.61 20701 504.12 3.06

Table 4: Performance comparison. For each benchmark, per-
formances of Korat and AA are compared for a range of fini-
tization values. For values larger than presented, AA does not
complete its generation within 1 hour. Korat’s performance for
larger values is given in Table 3.

Table 4 summarizes the performance comparison. Since AA can-
not handle arbitrary arithmetic, we do not generate HashSets with
AA. For all other benchmarks, we compare the total number of
structures/instances and the time to generate them for a range of
parameter values. We also compare the time to generate the first
structure/instance.

Time presented is the total elapsed real time (in seconds) that each
experiment took from the beginning to the end, including start-up.3
Start-up time for Korat is approximately 0.5 sec. (That is why in
some cases it seems that generating all structures is faster than gen-
erating the first structure or that generating all structures for a larger
input is faster than generating all structures for a smaller input.)
Start-up time for AA is somewhat higher, approximately 2 sec, as
AA needs to translate the model and to start a SAT solver. AA uses
precompiled binaries for SAT solvers.

In all cases, Korat outperforms AA; Korat is not only faster for
smaller inputs, but it also completes generation for larger inputs
than AA. There are two reasons that could account for this differ-
ence. Since AA translates Alloy models into boolean formulas, it
could be that the current (implementation of the) translation gener-
ates unnecessarily large boolean formulas. Another reason is that
often AA generates a much greater number of instances than Ko-
rat, which takes a greater amount of time by itself. One way to
reduce the number of instances generated by AA is to add more
symmetry-breaking predicates.

Our main argument for developing Korat was simple: for Java pro-
grammers not familiar with Alloy, it is easier to write a repOk
method than an Alloy model. (From our experience, for researchers
familiar with Alloy, it is sometimes easier to write an Alloy model
than a repOk method.) Before conducting the above experiments,
we expected that Korat would generate structures slower than AA.

3We include start-up time, because AA does not provide generation
time only for generating all instances. We eliminate the effect of
cold start by executing each test twice and taking the smaller time.

benchmark method max. test cases gen. test
size generated time time

BinaryTree remove 3 15 0.64 0.73
HeapArray extractMax 6 13139 0.87 1.39
LinkedList reverse 2 8 0.67 0.76
TreeMap put 8 19912 136.19 2.70
HashSet add 7 13106 3.90 1.72
AVTree lookup 4 27734 4.33 14.63

Table 5: Korat’s performance on several methods. All upper-
limiting finitization parameters for method inputs are set to the
given maximum size. These sizes give complete statement cov-
erage. Times are the elapsed real times in seconds for the entire
generation of all valid test cases and testing of methods for all
those inputs. These times include writing and reading of files
with test cases.

Our intuition was that Korat depends on the executions of repOk
to “learn” the invariants of the structures, whereas AA uses a SAT
solver that can “inspect” the entire formula (representing invari-
ants) to decide how to search for an assignment. The experimental
results show that our assumption was incorrect—Korat generates
structures much faster than AA. We are now exploring a translation
of Alloy models into Java (or even C) and the use of Korat (or a
similar search) to generate instances.

5.3 Checking correctness
Table 5 presents the results for checking methods with Korat. For
each benchmark, a representative method is chosen; the results
are similar for other methods. Methods remove and extract-
Max are presented in Section 2. Method reverse, from java.-
util.Collections, uses list iterators to reverse the order of list
elements; this method is static. Method put, from java.util.-
TreeMap, inserts a key-value pair into the map; this method has
three parameters (this, key, and value) and invokes several helper
methods that rebalance the tree after insertion. Method add in-
serts an element into the set. Method lookup, from INS, searches
a database of intentional names for a given query intentional
name. The correctness specifications for all methods specify sim-
ple containment properties (beside preservation of class invariants).

For each method, the MIN finitization parameters are set to zero
and the MAX and NUM parameters to the same size value. Thus, the
methods are checked for all valid inputs up to the maximum size,
not only for the maximum size. The results show that it is practical
to use Korat to exhaustively check correctness of intricate methods
that manipulate complex data structures.

AA can also be used to check correctness of Java methods by writ-
ing method specifications as Alloy models and defining appropriate
translations between Alloy instances and Java objects, as demon-
strated in the TestEra framework [22]. However, the large number
of instances generated by AA makes TestEra less practical to use
than Korat. For example, maximum sizes six and eight for ex-
tractMax and putmethods, respectively, are the smallest that give
complete statement coverage. As shown in Table 4, for these sizes,
AA cannot in a reasonable time even generate data structures that
are parts of the inputs for these methods.

6. RELATEDWORK
6.1 Specification-based testing
There is a large body of research on specification-based testing. An
early paper by Goodenough and Gerhart [13] emphasizes its impor-
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Korat Alloy Analyzer
benchmark size struc. total first inst. total first

gen. time struc. gen. time inst.
3 5 0.56 0.62 6 2.63 2.63
4 14 0.58 0.62 28 3.91 2.78

BinaryTree 5 42 0.69 0.67 127 24.42 4.21
6 132 0.79 0.66 643 269.99 6.78
7 429 0.97 0.62 3469 3322.13 12.86
3 66 0.53 0.58 78 11.99 6.20

HeapArray 4 320 0.57 0.59 889 171.03 16.13
5 1919 0.73 0.63 1919 473.51 39.58
3 5 0.58 0.60 10 2.61 2.39
4 15 0.55 0.65 46 3.47 2.77

LinkedList 5 52 0.57 0.65 324 14.09 3.51
6 203 0.73 0.61 2777 148.73 5.74
7 877 0.87 0.61 27719 2176.44 10.51
4 8 0.75 0.69 16 12.10 6.35

TreeMap 5 14 0.87 0.88 42 98.09 18.08
6 20 1.49 0.98 152 1351.50 50.87
2 2 0.55 0.65 2 2.35 2.43

AVTree 3 84 0.65 0.61 132 4.25 2.76
4 5923 1.41 0.61 20701 504.12 3.06

Table 4: Performance comparison. For each benchmark, per-
formances of Korat and AA are compared for a range of fini-
tization values. For values larger than presented, AA does not
complete its generation within 1 hour. Korat’s performance for
larger values is given in Table 3.

Table 4 summarizes the performance comparison. Since AA can-
not handle arbitrary arithmetic, we do not generate HashSets with
AA. For all other benchmarks, we compare the total number of
structures/instances and the time to generate them for a range of
parameter values. We also compare the time to generate the first
structure/instance.

Time presented is the total elapsed real time (in seconds) that each
experiment took from the beginning to the end, including start-up.3
Start-up time for Korat is approximately 0.5 sec. (That is why in
some cases it seems that generating all structures is faster than gen-
erating the first structure or that generating all structures for a larger
input is faster than generating all structures for a smaller input.)
Start-up time for AA is somewhat higher, approximately 2 sec, as
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than AA. There are two reasons that could account for this differ-
ence. Since AA translates Alloy models into boolean formulas, it
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often AA generates a much greater number of instances than Ko-
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reduce the number of instances generated by AA is to add more
symmetry-breaking predicates.

Our main argument for developing Korat was simple: for Java pro-
grammers not familiar with Alloy, it is easier to write a repOk
method than an Alloy model. (From our experience, for researchers
familiar with Alloy, it is sometimes easier to write an Alloy model
than a repOk method.) Before conducting the above experiments,
we expected that Korat would generate structures slower than AA.

3We include start-up time, because AA does not provide generation
time only for generating all instances. We eliminate the effect of
cold start by executing each test twice and taking the smaller time.

benchmark method max. test cases gen. test
size generated time time

BinaryTree remove 3 15 0.64 0.73
HeapArray extractMax 6 13139 0.87 1.39
LinkedList reverse 2 8 0.67 0.76
TreeMap put 8 19912 136.19 2.70
HashSet add 7 13106 3.90 1.72
AVTree lookup 4 27734 4.33 14.63

Table 5: Korat’s performance on several methods. All upper-
limiting finitization parameters for method inputs are set to the
given maximum size. These sizes give complete statement cov-
erage. Times are the elapsed real times in seconds for the entire
generation of all valid test cases and testing of methods for all
those inputs. These times include writing and reading of files
with test cases.

Our intuition was that Korat depends on the executions of repOk
to “learn” the invariants of the structures, whereas AA uses a SAT
solver that can “inspect” the entire formula (representing invari-
ants) to decide how to search for an assignment. The experimental
results show that our assumption was incorrect—Korat generates
structures much faster than AA. We are now exploring a translation
of Alloy models into Java (or even C) and the use of Korat (or a
similar search) to generate instances.

5.3 Checking correctness
Table 5 presents the results for checking methods with Korat. For
each benchmark, a representative method is chosen; the results
are similar for other methods. Methods remove and extract-
Max are presented in Section 2. Method reverse, from java.-
util.Collections, uses list iterators to reverse the order of list
elements; this method is static. Method put, from java.util.-
TreeMap, inserts a key-value pair into the map; this method has
three parameters (this, key, and value) and invokes several helper
methods that rebalance the tree after insertion. Method add in-
serts an element into the set. Method lookup, from INS, searches
a database of intentional names for a given query intentional
name. The correctness specifications for all methods specify sim-
ple containment properties (beside preservation of class invariants).

For each method, the MIN finitization parameters are set to zero
and the MAX and NUM parameters to the same size value. Thus, the
methods are checked for all valid inputs up to the maximum size,
not only for the maximum size. The results show that it is practical
to use Korat to exhaustively check correctness of intricate methods
that manipulate complex data structures.

AA can also be used to check correctness of Java methods by writ-
ing method specifications as Alloy models and defining appropriate
translations between Alloy instances and Java objects, as demon-
strated in the TestEra framework [22]. However, the large number
of instances generated by AA makes TestEra less practical to use
than Korat. For example, maximum sizes six and eight for ex-
tractMax and putmethods, respectively, are the smallest that give
complete statement coverage. As shown in Table 4, for these sizes,
AA cannot in a reasonable time even generate data structures that
are parts of the inputs for these methods.

6. RELATEDWORK
6.1 Specification-based testing
There is a large body of research on specification-based testing. An
early paper by Goodenough and Gerhart [13] emphasizes its impor-
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This class

• Korat: Automated Testing Based on Java Predicates (ISSTA'02)

• TestEra: A Novel Framework for Automated Testing of Java Programs 
(ASE'01)
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TestEra vs Korat

• Similarities:
• Both target structurally complex test input generation based on specifications
• Both automatically generate all non-isomorphic tests within a given input size

• Differences
• TestEra uses Alloy1 as the specification language

• Alloy is a simple declarative language based on first-order logic

• TestEra uses Alloy and Alloy Analyzer to generate the tests and to evaluate the 
correctness criteria
• TestEra produces concrete Java inputs as counterexamples to violated 

correctness criteria

281 https://www.csail.mit.edu/research/alloy

https://www.csail.mit.edu/research/alloy


TestEra components

• A specification of inputs to a Java program written in Alloy
• Class invariant and precondition

• A correctness criterion written in Alloy
• Class invariant and post-condition

• An concretization function 
• Which maps instances of Alloy specifications to concrete Java objects 

• An abstraction function
• Which maps the concrete Java objects to instances of Alloy specifications
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TestEra big picture
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TestEra: example

• Signature declaration introduces 
the List type with functions:
• elem: List ⟶ Integer
• next: List ⟶ List

• next is a partial function which is 
indicated by the keyword lone
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class List {
int elem;
List next;
static List mergeSort(List l) { ... }

}

module list
import integer
sig List {

elem: Integer,
next: lone List 

}

Java code Alloy model

• A recursive method for 
performing merge sort on 
acyclic singly linked lists



Input specification

• ~: transpose (converse 
relation)

• *: reflexive transitive
closure

• Subsignature Input is a
subset of List and it has
exactly one atom which is
indicated by the keyword
one
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module list
import integer

sig List {
elem: Integer,
next: lone List }

fun Acyclic(l: List) {
all n: l.*next | lone n.~next // at most one parent
no l.~next } // head has no parent

one sig Input in List {}

fact GenerateInputs {
Acyclic(Input) }



Correctness specification

• #: cardinality of sets
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fun Sorted(l: List) {
all n: l.*next | some n.next => n.elem <= n.next.elem } //?

fun Perm(l1: List, l2:List)
all e: Integer | #(e.~elem & l1.*next) = 

#(e.~elem & l2.*next) } //?

fun MergeSortOK(i:List, o:List) {
Acyclic(o)
Sorted(o)
Perm(i,o) }

one sig Output in List {}

fact OutputOK {
MergeSortOk(Input, Output) }



Counter-examples

• If an error is inserted in the method for merging where (l1.elem <= 
l2.elem) is changed to (l1.elem >= l2.elem)
• Then TestEra generates a counter example:
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Counterexample found:
Input List: 1 -> 1 -> 3 -> 2
Output List: 3 -> 2 -> 1 -> 1



TestEra: case studies

• Red-Black trees
• Tested the implementation of Red-Black trees in java.util.TreeMap
• Introduced some bugs and showed that they can catch them with TestEra

framework

• Intentional Naming System
• A naming architecture for resource discovery and service location in dynamic 

networks
• Found some bugs

• Alloy Analyzer
• Found some bugs in the Alloy Analyzer using TestEra framework

35



Discussion

• Strengths

• Limitations

• Future work
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When should we use Korat and/or TestEra?
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Thanks and stay safe!


