
Advanced Software Testing and
Debugging (CS598)

Intro

Lingming Zhang
Fall 2020

Course info

• Instructor: Lingming Zhang
• Homepage: http://lingming.cs.illinois.edu/
• Email: lingming@illinois.edu
• Class Time: Tues/Thur 09:30am -- 10:45am (Central Time)
• Office hours: Tues/Thur 10:45am – 11:45am (Central Time)

• Course:
• Webpage: http://lingming.cs.illinois.edu/courses/cs598ast-f20.html
• Forum/notifications: piazza.com/illinois/fall2020/cs598ast
• Zoom link: https://illinois.zoom.us/j/91263560130
• Social events: ???

2

http://lingming.cs.illinois.edu/
mailto:lingming@illinois.edu
http://lingming.cs.illinois.edu/courses/cs598ast-f20.html
https://piazza.com/illinois/fall2020/cs598ast
https://illinois.zoom.us/j/91263560130

About me

• This is my first class in Illinois!
• I work on Software Engineering, as well as its synergy with Machine

Learning, Formal Methods, and Programming Languages
• Simply put, I love building practical systems to deal with all types of software bugs

• I got my PhD from UT Austin in 2014
• I worked at UT Dallas for 6 years before joining Illinois
• I applied to Illinois for grad school
• Obviously I failed:(

3

About you

• Who are you (and where are you now)?
• What are you working on or interested in?
• What do you want to learn/obtain from the class?
• Anything else you’d like to share?
• E.g., what’s your story with software bugs?J

4

About the class

5

Textbook

6

Class organization
• Discuss two research papers each class
• They usually belong to the same topic
• The primary paper will be formally presented and discussed
• The optional paper will usually be briefly discussed

• You are required to
• Read both papers before each class
• Write review for the primary paper before each class

• Due: 11:59pm before each class day (submission links on course website)
• Participate in the classroom discussions

• I will randomly choose students to answer questions
• Lead the discussion for one class

• Make your choice before 11:59pm Sept. 5th (submission link on course website)

7

Goal of the course

• Get you exposed to real-world software testing and debugging
problems
• Get you interested in SE/PL/FM research (if possible)
• Get your feet wet in SE/PL/FM research (through course project)
• Get you familiar with the typical research process (if you are junior

PhD students)

8

Grading

Paper review 20%

Paper presentation 10%

Class participation 10%

Course project 60%

9

•No exam!

Basic questions to ask on a research paper
• Why is the targeted problem important?
• What is the proposed technique and why does it work?

• Does the proposed technique have enough technical contribution?

• How is the proposed technique evaluated?
• Are the evaluation benchmarks/subjects real-world systems?
• Are the used metrics reasonable?
• Is the experimental procedure replicable?
• Is it compared against state-of-the-art techniques?

• How are the experimental results?
• Does it outperform prior work marginally or substantially?

• What are the impacts of this work?
• Is it working on a rather specific problem or impacting a larger area?

• What are the strengths/limitations for this work?
• What are your suggestions/proposals to further advance this work?

10

Reading papers

• “How to Read a Research Paper”, by Michael Mitzenmacher
• http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

• “How to Read an Engineering Research Paper”, by William Griswold
• http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

• Advice compiled by Tao Xie:
• http://taoxie.cs.illinois.edu/advice.htm#review

11

http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html
http://taoxie.cs.illinois.edu/advice.htm

Writing reviews

• “The Task of the Referee”, by Allan Smith
• http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.3844

• “Constructive and Positive Reviewing” by Mark Hill and Kathryn
McKinley
• http://www.cs.utexas.edu/users/mckinley/notes/reviewing.html

12

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.3844
http://www.cs.utexas.edu/users/mckinley/notes/reviewing.html

Presenting papers

• “How to give strong technical presentations” by Markus Püschel
• http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-

presentations.pdf

• Patrick Winston’s talk @ MIT:
• https://www.youtube.com/playlist?list=PL9F536001A3C605FC

• Jean Luc Doumont’s talk
• https://www.youtube.com/watch?v=meBXuTIPJQk

13

http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf
https://www.youtube.com/playlist?list=PL9F536001A3C605FC
https://www.youtube.com/watch?v=meBXuTIPJQk

14

The way to learn software engineering is to
go out there and do software engineering

Course project: group

• The course project will be group-based
• 1-2 students in each group
• Feel free to use the “Search for Teammates” thread on Piazza

• Let me know if you need help to find teammate(s)

• Suggestions for finding your teammate
• Find someone with common interest but complementary expertise!

15

Course project: topic
• A list of example topics on software testing&debugging will be available

for you to choose from on Piazza
• Research-based ones: recommended for PhD students
• Engineering-based ones: recommended for MS/MCS students

• You are encouraged to propose your own topics (subject to my approval)
• Especially the ones related to your own research/experience/interest

• Most research-based projects will fall into the following categories:
• Bug study: study a specific (and interesting) type of bugs (>100), discuss the

potentially implications for future bug detection, diagnosis, and fixing
• Technique study: empirically study and compare a set of state-of-the-art bug

detection, diagnosis, and fixing techniques on new and larger datasets
• New technique: design and build new techniques for better testing and/or

debugging of certain types of bugs 16

Course project: topic selection
• Is this topic an impactful problem?
• Is this topic related to my own research?
• Am I really passionate about this topic?
• More importantly, can I finish this on time and in good shape?
• Detect unknown bugs, or
• Outperform state of the art on real-world benchmarks, or
• Provide practical guidelines for future testing and debugging

• Don’t know what to work on yet?
• Read the course project document and the papers in our schedule!
• Read more related papers (e.g., ICSE, FSE, ISSTA, PLDI, SOSP/OSDI, Oakland)
• Discuss with me!

17

Course project: deadlines
• Proposal (due 9/28)
• What is the targeted

problem
• Why is it important
• How you will do it
• How you will evaluate it
• What is your plan and

expected outcome

• Deliverables
• 1-page .txt proposal
• 5min presentation

(9/24)

18

• Midterm (due 11/15)
• What have you done
• Any challenges you

have faced
• Any changes you have

made since proposal
• Concrete plan for final

report

• Deliverables
• 3-4 page PDF report
• 10min presentation

(11/10)

• Final (due 12/15)
• What is the targeted

problem
• Why is it important
• How you have done it
• How you have

evaluated it
• What is your outcome

• Deliverables
• 5-6 page PDF report
• 15min presentation

(12/08)

The final report/presentation will be evaluated based on
real research paper standards (e.g., the ones you are going to read)

Why this course?

• Software bugs are inevitable!
• Programming still mainly a manual process
• Software systems can be rather complicated
• Software systems can be evolving
• Interaction between software systems
• Dependence on hardware supports
• …

19

The first “bug”

20

“You were partly correct, I did find a
‘bug’ in my apparatus, but it was not in
the telephone proper…

Thomas Edison (early 1800s)

The first computer “bug”

21

“First actual case of bug being found.”
Grace Hopper (1947)

Nowadays,
software is
everywhere!

22

So are software bugs...

23

Software testing and debugging cycle

• Build cycles per day:
• Google: 17K*
• Facebook: 60K
• Microsoft: 30K

24

Fix bugs!

Localize bugs!Detect bugs!

v Google: https://bit.ly/2SYY4rR
v Facebook: https://bit.ly/2CAPvN9 (Android only)
v Microsoft: https://bit.ly/2HgjUpw

https://bit.ly/2SYY4rR
https://bit.ly/2CAPvN9
https://bit.ly/2HgjUpw

Course topics (tentative)
Bug detection
Guided Unit Test Gen
Symbolic Execution
Spec-based Test Gen
Fuzz Testing
Human-assisted Bug Detection
Oracle Inference
Regression Testing

Bug diagnosis&localization
Failure Analysis and Cause Reduction
Fault Localization

Bug fixing
Search-based Program Repair
Semantics-based Program Repair
Faster Program Repair
Unified Debugging

Testing&debugging for
more
Flaky Tests
ML: Deep Learning Models/Libs
FM: SMT Solvers
DB: DB Engines

25This is tentative, let me know your thoughts!

White-box testing

Black-box testing

Guided unit test generation

26

• Feedback guide:
• Discarding illegal/redundant tests
• Covering more object states
• Closer to coverage targets
• …

public class HashSet extends Set{
public boolean add(Object o){…}
public boolean remove(Object o){…}
public boolean isEmpty(){…}
public boolean equals(Object o){…}
...

}

Set s = new HashSet();
s.add(“hi”);

Set s = new HashSet();
s.add(“hi”);
s.remove(null);

Set s = new HashSet();
s.isEmpty();
s.remove(“no”);
s.isEmpty();
s.add(“no”);
s.isEmpty();
s.isEmpty();
...

Program under test

Generated test t1

Generated test t2

Generated test t3

Generation

Fe
ed

ba
ck

…

Symbolic execution

27

void testme (int x, int y) {
z = 4 * y;
if (z == x) {

if (x > y+4) {
ERROR;

}
}

}

1
2
3
4
5
6

Symbolic
Execution

SMT/SAT
Solver

Program under test

X0=8, Y0=2

x: X0
y: Y0

z: ⦰

x: X0
y: Y0
z: 4Y0

x: X0
y: Y0

z: 4Y0

x: X0
y: Y0

z: 4Y0

x: X0
y: Y0

z: 4Y0

x: X0
y: Y0
z: 4Y0

4Y0=X0 4Y0!=X0

X0>Y0+4 X0<=Y0+4

4Y0=X0⋀ X0>Y0+4

PC

ERROR!

Spec-based testing

28

Program

// specification for removing from binary tree
/*@ public normal_behavior

@ requires has(n); // precondition
@ ensures !has(n); // postcondition @*/

…

Generated tests

Generate

Execute

Fuzz testing

• Feedback guide
• New coverage?
• Longer execution?
• Valid input?

29

./Program < /dev/random

ProgramFuzzer

#$H&&*HN

Generate Execute

Feedback

• Fuzzing strategies
• Mutation-based
• Grammar-based
• Learning-based

• Targeted programs
• Binaries
• Compilers
• Browsers
• Deep learning systems
• …

Test oracle problem!

30

ProgramInput Output

1https://en.wikipedia.org/wiki/Test_oracle

Bug detected!

Test oracle: a mechanism for determining whether software
executed correctly for a test1.

One of the hardest problem in Software Engineering!

How to mitigate it?

Differential testing

31

ProgramInput Output

Program’

Program’’

Output’

Output’’

≈
≈

=
=

Provide the same input to similar applications, and observe output differences

Differential testing: browsers

32

ProgramInput Output

Program’

Program’’

Output’

Output’’

≈
≈

=
=

Provide the same input to similar applications, and observe output differences

Metamorphic testing

33

Program: PInput: I Output: P(I)

Output: P(I+∆)

=
∆+

Input: I+∆

=
∆+

P(I+∆) = P(I)+∆ For example:
Sin(I+2𝛑) = Sin(I)

Sin(-I) = -Sin(I)

Provide the manipulated inputs to same application,
and observe if output differences are as expected

Oracle inference

• How to automatically obtain such
predicates?
• Manual summarization
• Automated inference via analyzing the

current project
• Learning/mining from other projects

34

public class HashSet extends Set{
/*@ public normal_behavior
@ requires !has(o); // precondition
@ ensures has(o); // postcondition @*/
public boolean add(Object o){…}

/*@ public normal_behavior
@ requires has(o); // precondition
@ ensures !has(o); // postcondition @*/
public boolean remove(Object o){…}
...

}

Program under test

Human-assisted bug detection

35

Historical bugs Manual inspection Derived techniques

Regression testing

• Regression testing is extremely costly in practice
• Facebook has over 10,000 tests run per change
• Google has over 150 million test executions per day

36

Regression
tests

V1 V2

?

Failure Analysis and Cause Reduction

37

Which page(s) caused Microsoft Word to crash?

Fault localization

38

0.86

0.04

0.17

Dynamic/static analysisBuggy program Potential buggy locations

Program repair

• Search-based program repair
• Transforms the repair problem to a search space exploration problem

• Semantics-based program repair
• Leverages symbolic execution and constraint solving

39

0.86
0.00

0.17

Fault Localization
[Jones et al.]

Patch
Generation

Patch
Validation

Correct patchesPlausible patchesCandidate stmts

Approved

Manual
Inspection

How to perform faster repair?

Unified debugging

40

0.86
0.04

0.17

q Parnin et al., “Are automated debugging techniques actually helping programmers?”. ISSTA’11
q Ghanbari et al., “Practical Program Repair via Bytecode Mutation”. ISSTA’19

NOW: Repair for Fault Localization!

PAST DECADE: Fault localization for repair

Limited effectiveness
for manual repair in
practice [Parnin et al.]

Fault Localization:

Largely refined fault
localization for
manual repair

Fixing <20% real-
world bugs [Ghanbari
et al.]

Program Repair:

Making automated
repair applicable to
all bugs!

Testing and debugging for more

• Test the tests!
• Flaky tests

• Machine learning
• DNN models/libs

• Formal methods
• SMT solvers

• Database
• Modern DB engines

• …

41

Any question for me?

42

Thanks and stay safe!

43

