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Course info

• Instructor: Lingming Zhang
• Homepage: http://lingming.cs.illinois.edu/
• Email: lingming@illinois.edu
• Class Time: Tues/Thur 09:30am -- 10:45am (Central Time)
• Office hours: Tues/Thur 10:45am – 11:45am (Central Time)

• Course:
• Webpage: http://lingming.cs.illinois.edu/courses/cs598ast-f20.html
• Forum/notifications: piazza.com/illinois/fall2020/cs598ast
• Zoom link: https://illinois.zoom.us/j/91263560130
• Social events: ???
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About me

• This is my first class in Illinois!
• I work on Software Engineering, as well as its synergy with Machine

Learning, Formal Methods, and Programming Languages
• Simply put, I love building practical systems to deal with all types of software bugs

• I got my PhD from UT Austin in 2014
• I worked at UT Dallas for 6 years before joining Illinois
• I applied to Illinois for grad school
• Obviously I failed:(
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About you

• Who are you (and where are you now)?
• What are you working on or interested in?
• What do you want to learn/obtain from the class?
• Anything else you’d like to share?
• E.g., what’s your story with software bugs?J
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About the class
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Textbook
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Class organization
• Discuss two research papers each class
• They usually belong to the same topic
• The primary paper will be formally presented and discussed
• The optional paper will usually be briefly discussed

• You are required to
• Read both papers before each class
• Write review for the primary paper before each class

• Due: 11:59pm before each class day (submission links on course website)
• Participate in the classroom discussions 

• I will randomly choose students to answer questions
• Lead the discussion for one class

• Make your choice before 11:59pm Sept. 5th (submission link on course website)
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Goal of the course

• Get you exposed to real-world software testing and debugging
problems
• Get you interested in SE/PL/FM research (if possible)
• Get your feet wet in SE/PL/FM research (through course project)
• Get you familiar with the typical research process (if you are junior

PhD students)
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Grading

Paper review 20%

Paper presentation 10%

Class participation 10%

Course project 60%
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•No exam!



Basic questions to ask on a research paper
• Why is the targeted problem important?
• What is the proposed technique and why does it work?

• Does the proposed technique have enough technical contribution?

• How is the proposed technique evaluated?
• Are the evaluation benchmarks/subjects real-world systems?
• Are the used metrics reasonable?
• Is the experimental procedure replicable?
• Is it compared against state-of-the-art techniques?

• How are the experimental results?
• Does it outperform prior work marginally or substantially?

• What are the impacts of this work?
• Is it working on a rather specific problem or impacting a larger area?

• What are the strengths/limitations for this work?
• What are your suggestions/proposals to further advance this work?
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Reading papers

• “How to Read a Research Paper”, by Michael Mitzenmacher
• http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

• “How to Read an Engineering Research Paper”, by William Griswold
• http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

• Advice compiled by Tao Xie:
• http://taoxie.cs.illinois.edu/advice.htm#review
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Writing reviews

• “The Task of the Referee”, by Allan Smith
• http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.3844

• “Constructive and Positive Reviewing” by Mark Hill and Kathryn 
McKinley
• http://www.cs.utexas.edu/users/mckinley/notes/reviewing.html
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Presenting papers

• “How to give strong technical presentations” by Markus Püschel
• http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-

presentations.pdf

• Patrick Winston’s talk @ MIT:
• https://www.youtube.com/playlist?list=PL9F536001A3C605FC

• Jean Luc Doumont’s talk
• https://www.youtube.com/watch?v=meBXuTIPJQk
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The way to learn software engineering is to
go out there and do software engineering



Course project: group

• The course project will be group-based
• 1-2 students in each group
• Feel free to use the “Search for Teammates” thread on Piazza

• Let me know if you need help to find teammate(s)

• Suggestions for finding your teammate
• Find someone with common interest but complementary expertise!
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Course project: topic
• A list of example topics on software testing&debugging will be available

for you to choose from on Piazza
• Research-based ones: recommended for PhD students
• Engineering-based ones: recommended for MS/MCS students

• You are encouraged to propose your own topics (subject to my approval)
• Especially the ones related to your own research/experience/interest

• Most research-based projects will fall into the following categories:
• Bug study: study a specific (and interesting) type of bugs (>100), discuss the

potentially implications for future bug detection, diagnosis, and fixing
• Technique study: empirically study and compare a set of state-of-the-art bug

detection, diagnosis, and fixing techniques on new and larger datasets
• New technique: design and build new techniques for better testing and/or

debugging of certain types of bugs 16



Course project: topic selection
• Is this topic an impactful problem?
• Is this topic related to my own research?
• Am I really passionate about this topic?
• More importantly, can I finish this on time and in good shape?
• Detect unknown bugs, or
• Outperform state of the art on real-world benchmarks, or
• Provide practical guidelines for future testing and debugging

• Don’t know what to work on yet?
• Read the course project document and the papers in our schedule!
• Read more related papers (e.g., ICSE, FSE, ISSTA, PLDI, SOSP/OSDI, Oakland)
• Discuss with me!
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Course project: deadlines
• Proposal (due 9/28)
• What is the targeted

problem
• Why is it important
• How you will do it
• How you will evaluate it
• What is your plan and

expected outcome

• Deliverables
• 1-page .txt proposal
• 5min presentation

(9/24)
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• Midterm (due 11/15)
• What have you done
• Any challenges you

have faced
• Any changes you have

made since proposal
• Concrete plan for final

report

• Deliverables
• 3-4 page PDF report
• 10min presentation

(11/10)

• Final (due 12/15)
• What is the targeted

problem
• Why is it important
• How you have done it
• How you have

evaluated it
• What is your outcome

• Deliverables
• 5-6 page PDF report
• 15min presentation

(12/08)

The final report/presentation will be evaluated based on
real research paper standards (e.g., the ones you are going to read)



Why this course?

• Software bugs are inevitable!
• Programming still mainly a manual process
• Software systems can be rather complicated
• Software systems can be evolving
• Interaction between software systems
• Dependence on hardware supports
• …
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The first “bug”
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“You were partly correct, I did find a 
‘bug’ in my apparatus, but it was not in 
the telephone proper…

Thomas Edison (early 1800s)



The first computer “bug”
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“First actual case of bug being found.”
Grace Hopper (1947)



Nowadays,
software is 
everywhere!
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So are software bugs...
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Software testing and debugging cycle

• Build cycles per day:
• Google: 17K*
• Facebook: 60K
• Microsoft: 30K
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Fix bugs!

Localize bugs!Detect bugs!

v Google: https://bit.ly/2SYY4rR
v Facebook: https://bit.ly/2CAPvN9 (Android only)
v Microsoft: https://bit.ly/2HgjUpw

https://bit.ly/2SYY4rR
https://bit.ly/2CAPvN9
https://bit.ly/2HgjUpw


Course topics (tentative)
Bug detection
Guided Unit Test Gen
Symbolic Execution
Spec-based Test Gen 
Fuzz Testing
Human-assisted Bug Detection
Oracle Inference
Regression Testing

Bug diagnosis&localization
Failure Analysis and Cause Reduction
Fault Localization

Bug fixing
Search-based Program Repair
Semantics-based Program Repair
Faster Program Repair
Unified Debugging

Testing&debugging for
more
Flaky Tests
ML: Deep Learning Models/Libs
FM: SMT Solvers
DB: DB Engines

25This is tentative, let me know your thoughts!

White-box testing

Black-box testing



Guided unit test generation
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• Feedback guide:
• Discarding illegal/redundant tests
• Covering more object states
• Closer to coverage targets
• …

public class HashSet extends Set{ 
public boolean add(Object o){…}
public boolean remove(Object o){…}
public boolean isEmpty(){…} 
public boolean equals(Object o){…}
...

}

Set s = new HashSet(); 
s.add(“hi”);

Set s = new HashSet(); 
s.add(“hi”); 
s.remove(null);

Set s = new HashSet(); 
s.isEmpty(); 
s.remove(“no”); 
s.isEmpty(); 
s.add(“no”); 
s.isEmpty(); 
s.isEmpty();
...

Program under test

Generated test t1

Generated test t2

Generated test t3

Generation

Fe
ed

ba
ck

…



Symbolic execution
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void testme (int x, int y) {
z = 4 * y;
if (z == x) {

if (x > y+4) {
ERROR;

}
}

}

1
2
3
4
5
6

Symbolic
Execution

SMT/SAT
Solver

Program under test

X0=8, Y0=2

x: X0
y: Y0

z: ⦰

x: X0
y: Y0
z: 4Y0

x: X0
y: Y0

z: 4Y0

x: X0
y: Y0

z: 4Y0

x: X0
y: Y0

z: 4Y0

x: X0
y: Y0
z: 4Y0

4Y0=X0 4Y0!=X0

X0>Y0+4 X0<=Y0+4

4Y0=X0⋀ X0>Y0+4

PC

ERROR!



Spec-based testing
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Program

// specification for removing from binary tree
/*@ public normal_behavior

@ requires has(n); // precondition 
@ ensures !has(n); // postcondition @*/

…

Generated tests

Generate

Execute



Fuzz testing

• Feedback guide
• New coverage?
• Longer execution?
• Valid input?
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./Program < /dev/random

ProgramFuzzer

#$H&&*HN

Generate Execute

Feedback

• Fuzzing strategies
• Mutation-based
• Grammar-based
• Learning-based

• Targeted programs
• Binaries
• Compilers
• Browsers
• Deep learning systems
• …



Test oracle problem!
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ProgramInput Output

1https://en.wikipedia.org/wiki/Test_oracle

Bug detected!

Test oracle: a mechanism for determining whether software 
executed correctly for a test1.

One of the hardest problem in Software Engineering!

How to mitigate it?



Differential testing
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ProgramInput Output

Program’

Program’’

Output’

Output’’

≈
≈

=
=

Provide the same input to similar applications, and observe output differences



Differential testing: browsers
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ProgramInput Output

Program’

Program’’

Output’

Output’’

≈
≈

=
=

Provide the same input to similar applications, and observe output differences



Metamorphic testing
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Program: PInput: I Output: P(I)

Output: P(I+∆)

=
∆+

Input: I+∆

=
∆+

P(I+∆) = P(I)+∆ For example:
Sin(I+2𝛑) = Sin(I) 

Sin(-I) = -Sin(I)

Provide the manipulated inputs to same application, 
and observe if output differences are as expected



Oracle inference

• How to automatically obtain such
predicates?
• Manual summarization
• Automated inference via analyzing the

current project
• Learning/mining from other projects
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public class HashSet extends Set{
/*@ public normal_behavior
@ requires !has(o); // precondition 
@ ensures has(o); // postcondition @*/
public boolean add(Object o){…}

/*@ public normal_behavior
@ requires has(o); // precondition 
@ ensures !has(o); // postcondition @*/
public boolean remove(Object o){…}
...

}

Program under test



Human-assisted bug detection
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Historical bugs Manual inspection Derived techniques



Regression testing

• Regression testing is extremely costly in practice
• Facebook has over 10,000 tests run per change
• Google has over 150 million test executions per day
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Regression
tests

V1 V2

?



Failure Analysis and Cause Reduction
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Which page(s) caused Microsoft Word to crash?



Fault localization
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0.86

0.04

0.17

Dynamic/static analysisBuggy program Potential buggy locations



Program repair

• Search-based program repair
• Transforms the repair problem to a search space exploration problem

• Semantics-based program repair
• Leverages symbolic execution and constraint solving
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0.86
0.00

0.17

Fault Localization
[Jones et al.]

Patch
Generation

Patch
Validation

Correct patchesPlausible patchesCandidate stmts

Approved

Manual
Inspection

How to perform faster repair?



Unified debugging
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0.86
0.04
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q Parnin et al., “Are automated debugging techniques actually helping programmers?”. ISSTA’11
q Ghanbari et al., “Practical Program Repair via Bytecode Mutation”. ISSTA’19

NOW: Repair for Fault Localization!

PAST DECADE: Fault localization for repair

Limited effectiveness
for manual repair in
practice [Parnin et al.]

Fault Localization:

Largely refined fault
localization for
manual repair

Fixing <20% real-
world bugs [Ghanbari
et al.]

Program Repair:

Making automated
repair applicable to
all bugs!



Testing and debugging for more

• Test the tests!
• Flaky tests

• Machine learning
• DNN models/libs

• Formal methods
• SMT solvers

• Database
• Modern DB engines

• …
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Any question for me?
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Thanks and stay safe!

43


