Advanced Software Testing and Debugging (CS598) Program Analysis Basics

Fall 2020
Lingming Zhang

3

Program analysis

Program

- Is it correct?
- Is it robust?
- Is it safe?
- Is it optimizable?
- ...

Program analyzers aim to automatically analyze the behavior of computer programs regarding certain properties

How do we analyze arbitrary programs?

Abstraction!

- Transform programs under analysis into structured code representations
- Easier parsing
- Easier modification
- Easier generation

What code representations are used in a typical compiler pass?

Source code

Lexical Analysis
Parsing
Semantic Analysis
Optimization
Code Generation

Machine/byte code

Lexical analysis

Source code

Lexical Analysis
Parsing
Semantic Analysis
Optimization
Code Generation

Machine/byte code

- Input: source code text (sequence of chars)
- Output: sequence of tokens

```
while (y<z) {
    x = a + b;
    y += x;
}
```


Syntactic analysis

- Input: sequence of tokens from lexical analysis
Source code

Lexical Analysis
Syntactic Analysis
Semantic Analysis
Optimization
Code Generation

- Output: abstract syntax tree (AST)

Machine/byte code

Semantic analysis

- Input: abstract syntax tree (AST)

Source code
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Optimization
Code Generation

Machine/byte code

- Output: annotated AST

Type checking rules

Optimization

- Input: original code representation

Source code
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Optimization
Code Generation

Machine/byte code

- Output: optimized code representation

```
int a=1;
int b=1;
while (y < z) {
    x = a + b;
    y+= x;
}
```


int $b=1$;
while ($y<z$) \{

$$
y+=2 ;
$$

\}

Code generation

- Input: optimized code representation

Source code
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Optimization
Code Generation

- Output: final target code

$$
\begin{aligned}
& \text { while }(y<z)\{ \\
& \qquad \begin{array}{l}
x=a+b ; \\
y+=x ;
\end{array} \\
& \}
\end{aligned}
$$

Machine/byte code

Topics

- Abstract syntax tree (AST)
- Control-flow graph (CFG)
- Control-flow-based code coverage
- Data-flow analysis
- Data-flow-based code coverage

How do we describe a programming language?

```
Example program:
while (y < z) {
    x = a + b;
    y += x;
}
A grammar covering this program and similar ones: Stmt \(\rightarrow\) WhileStmt | AssignStmt | CompoundStmt WhileStmt \(\rightarrow\) "while" "("Exp ")" Stmt
AssignStmt \(\rightarrow\) ID "=" Exp ";"
CompoundStmt \(\rightarrow\) "\{" StmtList "\}"
StmtList \(\rightarrow \varepsilon \mid\) Stmt StmtList
Exp \(\rightarrow\) Less \| Add \| ID
Less \(\rightarrow\) Exp "<" Exp
Add \(\rightarrow\) Exp "+" Exp
```


Context-free grammar

- A context-free grammar $\mathbf{G}=\langle\boldsymbol{\Sigma}, \mathbf{N}, \mathbf{P}, \mathbf{S}\rangle$, where
- $\boldsymbol{\Sigma}$: alphabet (finite set of symbols, or terminals)
- Often written in lowercase
- \mathbf{N} : a finite, nonempty set of nonterminal symbols, $\mathbf{N} \cap \boldsymbol{\Sigma}=\varnothing$
- Often at least the first letter in UPPERCASE
- \mathbf{P} : the set of production rules, each with the form $\mathbf{X} \rightarrow \mathbf{Y}_{\mathbf{1}} \mathbf{Y}_{\mathbf{2}} \ldots \mathbf{Y}_{\mathrm{n}}$
- where $\mathbf{X} \in \mathbf{N}, \mathbf{n} \geq \mathbf{0}$, and $\mathbf{Y}_{\mathrm{k}} \in \mathbf{N U \Sigma}$
- \mathbf{S} : the start symbol (one of the nonterminals), i.e., $\mathbf{S} \in \mathbf{N}$

Grammar (P):

Grammar (P):

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
$\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E} \quad=$
$\mathrm{E} \rightarrow$ (E)
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
$\boldsymbol{\Sigma}:+{ }^{*}(),$, id
E*E
N: E
$E \rightarrow i d$
| (E)
S: E
| id

Context-free grammar

Example program:
while ($\mathrm{y}<\mathrm{z}$) \{

$$
x=a+b ;
$$

$$
\text { y += } x ;
$$

\}

A grammar covering this program and similar ones: Stmt \rightarrow WhileStmt | AssignStmt | CompoundStmt WhileStmt \rightarrow "while" "("Exp ")" Stmt AssignStmt \rightarrow ID "=" Exp ";"
CompoundStmt \rightarrow "\{" StmtList "\}"
StmtList $\rightarrow \varepsilon \mid$ Stmt StmtList
$\operatorname{Exp} \rightarrow$ Less \| Add \| ID
Less $\rightarrow \operatorname{Exp}$ "<" $\operatorname{Exp} \quad \boldsymbol{\Sigma}:$ ID, "while", "(", "=", " $\{$ ",
Add $\rightarrow \operatorname{Exp} "+" E x p$

N: Stmt, WhileStmt, ...
S: Stmt

Context-free grammar: generating strings

- \mathbf{G} defines a language $\mathbf{L}(\mathbf{G})$ over the alphabet $\boldsymbol{\Sigma}$
- $\boldsymbol{\Sigma}^{*}$ is the set of all possible sequences of $\boldsymbol{\Sigma}$ symbols
- $\mathbf{L}(\mathbf{G})$ is the subset of $\boldsymbol{\Sigma}^{*}$ that can be derived from the start symbol \mathbf{S}, by following the production rules \mathbf{P}
- A derivation is such a sequence of productions applied

Grammar:	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$	$i d * i d$
$E \rightarrow E+E$	$\rightarrow E^{*} \mathrm{E}+\mathrm{E}$	id * id + id
\| E*E	$\rightarrow \mathrm{id}^{*} \mathrm{E}+\mathrm{E}$	id * id + id *id
\| (E)	\rightarrow id ${ }^{*} \mathrm{id}+\mathrm{E}$	$i d+i d+i d+i d$
\| id	\rightarrow id * id + id	

Context-free grammar: parsing strings

- Checking if input string (e.g., code) $\mathbf{s} \in \mathbf{L}(\mathbf{G})$, i.e., checking for acceptance
- Algorithm: Find a derivation starting from the start symbol of \mathbf{G} to \mathbf{s}

Language grammar:

$$
E \rightarrow E+E\left|E^{*} E\right|(E) \mid \text { id }
$$

$$
E \rightarrow E+E
$$

$\rightarrow \mathrm{E}^{*} \mathrm{E}+\mathrm{E}$
id *id +id
Source

$$
\rightarrow \mathrm{id}^{*} \mathrm{E}+\mathrm{E}
$$

$\rightarrow \mathrm{id}^{*} \mathrm{id}+E$
\rightarrow id ${ }^{*}$ id +id Derivation

Abstract syntax tree (AST)

- Simplified syntactic representations derived from code parse tree
- Represents the abstract syntactic structure of a language construct
- Usually the interior and root nodes represent operators, and the children of each node represent the operands of that operator

Parse tree

AST

ASTs differ from parse trees because superficial distinctions of form, unimportant for translation, do not appear in syntax trees...

AST: more examples

Example program:

Stmt

Parse tree
AST

AST: more examples

Example program:

Stmt
while (y < z) \{
$x=a+b ;$
y += x ;
\}
AssignStmt

Parse tree
AST

AST: more examples

AST: typical structures

Conditional check

Compound statement

Mapping between parse tree and AST

Production	Semantic Rules
$E \rightarrow E_{1}+E_{2}$	E.node $=$ new Node(" + "', E_{1}. node, E_{2}. node $)$
$E \rightarrow E_{1} * E_{2}$	E.node $=$ new Node("*"' E_{1}. node,E_{2}. node $)$
$E \rightarrow\left(E_{1}\right)$	E.node $=E_{1}$.node
$E \rightarrow$ id	E.node $=$ new Leaf(id, id.entry $)$

AST applications

- AST provides a basic model of source code, supporting reading, modifying, and even generating source code in a systematic way
- Compilers
- Program analysis
- Source code instrumentation
- Automated program repair
- Code generation
- ...

Topics

- Abstract syntax tree (AST)
- Control-flow graph (CFG)
- Control-flow-based code coverage
- Data-flow analysis
- Data-flow-based code coverage

Basic block

- A basic block is a sequence of straight-line code that can be entered only at the beginning and exited only at the end

Building basic blocks:

1. Identify leaders:

- The first instruction in a procedure, or
- The target of any branch, or
- An instruction immediately following a branch

2. Gobble all subsequent instructions until the next leader

Basic block example

Program
while $(x<y)$ \{
$y=f(x, y)$;
if $(y==0)$ \{
brealk;
\} else if $(y<0)$ \{
$y=y^{*}$;
continue;
\}
$x=x+1 ;$
\}
print (y);

Leaders
1
2

4
5
6

9

Building basic blocks:

1. Identify leaders:

- The first instruction in a procedure, or
- The target of any branch, or
- An instruction immediately following a branch

2. Gobble all subsequent instructions until the next leader

Basic blocks

1: while ($x<y$)
2: $y=f(x, y)$
3: if($y==0)$
4: break
5: else if($y<0$)
6: $y=y^{* 2}$
7: continue
9: $x=x+1$

Control-flow graph (CFG)

- A control-flow graph (CFG) is a rooted directed graph $\mathbf{G}=\langle\mathbf{N}, \mathrm{E}\rangle$
- \mathbf{N} is the set of basic blocks
- \mathbf{E} is the flow of control between basic blocks

Building CFG:

1. Each CFG node represents a basic block
2. There is an edge from node \mathbf{i} to \mathbf{j} if

- Last statement of block i branches to the first statement of \mathbf{j}, or
- Block \mathbf{i} is immediately followed in program order by block \mathbf{j} (fall through)

That said, as long as the execution of node \mathbf{i} could be followed by node \mathbf{j}, connect them!

CFG example

Program

```
whille (x<y) {
        y = f(x,y);
        if (y == 0) {
            brealk;
        } else if (y<0) {
        y = y*2;
            continue;
        }
        x = x + I;
IO }
|| print (y);
```


CFG

Topics

- Abstract syntax tree (AST)
- Control-flow graph (CFG)
- Control-flow-based code coverage
- Data-flow analysis
- Data-flow-based code coverage

Control-flow-based code coverage

- Given the CFG, define a coverage target and write tests to achieve it
- Higher coverage=> more code portions tested=> potentially better tests!
- A practical way to measure test quality!
- Typical control-flow-based code coverage
- Statement coverage
- Branch coverage (aka decision coverage)
- Path coverage
- Condition coverage
- Modified condition/decision coverage (MCDC)
- ...

Statement coverage

- Target: covering all CFG nodes

Test1: 1-11
Test2: 1-2-3-4-11
Test3: 1-2-3-5-9-1-11

Are they covering all statements?
NO, statement coverage: 7/9, statements 6 and 7 never covered!

Branch coverage (decision coverage)

- Target: covering all CFG edges
- Equivalent to covering all branches of the predicate nodes
- True and false branches of each if node
- The two branches corresponding to the condition of a loop
- All alternatives in a switch node
- Is branch coverage equivalent to statement coverage?

```
if (x<y) {
    x++;
}
return x;
```


Test1: $x=1, y=2$
Statement coverage: $3 / 3$
Branch coverage: $1 / 2$

Path coverage

- Target: covering all possible paths on CFG
- Is path coverage equivalent to branch coverage?

Test1: $\mathrm{x}=1, \mathrm{y}=2$ Test2: $\mathrm{x}=10, \mathrm{y}=2$

Branch coverage: 4/4 Path coverage: 2/4

The number of paths could be infinite (loops) or exponential (branches)!

Control-flow-based coverage: summary

- Path coverage strictly subsumes branch coverage
- Branch coverage in turn strictly subsumes statement coverage

Coverage subsumption graph

Topics

- Abstract syntax tree (AST)
- Control-flow graph (CFG)
- Control-flow-based code coverage
- Data-flow analysis
- Data-flow-based code coverage

Data-flow analysis

- A framework for proving facts (e.g., reaching definitions) about programs
- Operates on control-flow graphs (CFGs), typically
- Works best on properties about how program computes
- Based on all paths through program
- Including infeasible paths

Variable definition/use

- A program variable is defined whenever its value is modified:
- On the left-hand side of an assignment statement: $\mathbf{y}=17$
- In an input statement: read(y)
- As a call-by-reference parameter in a subroutine call: update(x, \&y)
- A program variable is used whenever its value is read:
- P-use (predicate-use): use in the predicate of a branch statement
- C-use (computation-use): all other uses

A typical analysis: reaching definitions

- A definition (statement) \mathbf{d} of a variable \mathbf{v} reaches CFG node \mathbf{n} if there is a path from \mathbf{d} to \mathbf{n} such that \mathbf{v} is not redefined along that path
- Reaching definitions applications:
- Build use/def chains
- Constant propagation
- Loop invariant code motion

$\notin \operatorname{Def}[x]$

Is this the only def of x reaching n ?
Any other reaching definitions of x / y in the loop? Can we replace $y=x * 2$ with $y=10$?

Reaching definitions: example

n	IN[n]	OUT[n]
B1	\emptyset	$\{d 1\}$
B2	$\{d 1\}$	$\{d 1\}$
B3	$\{d 1\}$	$\{d 2\}$
B4	$\{d 1, d 2\}$	$\{d 3\}$
B5	$\{d 1, d 3\}$	$\{d 1, d 3, d 4\}$

IN[n]: set of facts (reaching definitions) at entry of node n OUT[n]: set of facts (reaching definitions) at exit of node n

Constant propagation can be applied to B 5 as j is always 1!

Reaching definitions: transfer functions

KILL[n] = a set of definitions killed by definitions in node n GEN[n] = a set of locally available definitions in node n
OUT[n] = (IN[n] - KILL[n]) U GEN[n]

$\operatorname{GEN}[n]=\{d\}$
$\operatorname{KILL}[n]=\operatorname{Def}[x]-\{d\}$, where $\operatorname{Def}[x]:$ set of all definitions of x

Reaching definitions algorithm

```
for (each node n):
    IN[n] = OUT[n] = \emptyset
for (each node n):
    IN[n]= U n'\in predecessors(n) OUT[n']
    OUT[n] = (IN[n] - KILL[n]) \cup GEN[n]
```


Any issues?

Reaching definitions: example

n	IN[n]	OUT[n]
B1	\emptyset	$\{d 1\}$
B2	$\{d 1\}$	$\{d 1\}$
B3	$\{d 1\}$	$\{d 2\}$
B4	$\{d 1\}$	$\{d 3\}$
B5		
Order		
matters!		

The IN set for B4 is incorrect (should be $\{\mathrm{d} 1, \mathrm{~d} 2\}$)!

Reaching definitions algorithm: revised

```
for (each node n):
    IN[n] = OUT[n] = \emptyset
repeat:
for (each node n):
    IN[n]= U n'\in predecessors(n)}\mathrm{ OUT[n']
    OUT[n] = (IN[n] - KILL[n]) \cup GEN[n]
until fixed point: IN[n] and OUT[n] stop changing for all n
```


Reaching definitions: revisit the example

$$
\begin{aligned}
& \operatorname{IN}[n]=\bigcup_{n^{\prime} \in \text { predecessors }(n)} \text { OUT }\left[n^{\prime}\right] \\
& \text { OUT }[n]=(I N[n]-\operatorname{KILL[n]}) \cup G E N[n]
\end{aligned}
$$

$\operatorname{IN}[n]=$ a set of reaching definitions before n
OUT[n] = a set of reaching definitions after n
KILL[n] = a set of definitions killed by definitions in node n_{44}
GEN[n] = a set of locally available definitions in node n

Does it always terminate?

The two operations of reaching definitions analysis are monotonic

IN and OUT sets never shrink, only grow

Largest they can be is set of all definitions in program, i.e., finite

IN and OUT cannot grow forever

IN and OUT will stop changing after some iteration

$$
\operatorname{N}[n]=U_{n^{\prime} \in \text { E predecessoss(n) }} \text { OUT }\left[n^{\prime}\right]
$$

OUT[n] = (IN[n] - KILL[n]) U GEN[n]

Other classical dataflow analyses

- Live Variables Analysis: for dead code elimination
- Determine for each program point which variables could be live at the point's exit
- A variable is live if there is a path to a use of the variable that doesn't redefine the variable
- Available Expressions Analysis: for avoiding recomputing expressions
- Determine, for each program point, which expressions must already have been computed, and not later modified, on all paths to the program point
- Very Busy Expressions Analysis: for reducing code size
- An expression is very busy if, no matter what path is taken, the expression is used before any of the variables occurring in it are redefined

Live variables: transfer functions

OUT[n]=IN[nI] U IN[n2] $\cup \operatorname{IN}[n 3]$
OUT[n] $=\bigcup_{n^{\prime} \in \operatorname{successors}(n)} \operatorname{IN}\left[n^{\prime}\right]$

$\operatorname{KILL}[n]=$ a set of variables defined in node n GEN[n] = a set of variables used in node n
$\operatorname{IN}[n]=(O U T[n]-\operatorname{KILL}[n]) \cup G E N[n]$

$\operatorname{IN}[n]$
$x=y+z$
OUT[n]
GEN[n] $=\{y, z\}$
$\operatorname{KILL}[n]=\{x\}$

Live variables analysis: example

$$
\begin{aligned}
& \text { OUT }[n]=\bigcup_{n^{\prime} \in \operatorname{succcessors(n)}} \operatorname{NN}\left[n^{\prime}\right] \\
& \operatorname{IN}[n]=(\text { OUT[n] }-\operatorname{KILL[n]}) \cup G E N[n]
\end{aligned}
$$

$\operatorname{IN}[n]=$ a set of live variables before n
OUT[n] = a set of live variables after n
KILL[n] = a set of variables defined in node n
GEN[n] = a set of variables used in node n

Reaching definitions vs. live variables

- Facts: set of definitions
- Direction: forward
- Join operator: U
- Transfer functions:
- $\operatorname{IN}[n]=U_{n^{\prime} \in \text { predecessors(n) }}$ OUT[n']
- $\operatorname{OUT}[\mathrm{n}]=(\operatorname{IN}[\mathrm{n}]-\operatorname{KILL}[n]) \cup \operatorname{GEN}[n]$

Reaching definitions

- Facts: set of variables
- Direction: backward
- Join operator: U
- Transfer functions:
- OUT[n] $=\bigcup_{n^{\prime} \in \text { succcessors(n) } n} I N\left[n^{\prime}\right]$
- $\operatorname{IN}[n]=(O U T[n]-\operatorname{KILL}[n]) \cup G E N[n]$

Live variables

Classifying all four dataflow analyses

	May	Must
Forward	Reaching Definitions	Available Expressions
Backward	Live Variables	Very Busy Expressions

- Forward = Data flow from in to out
- Backward = Data flow from out to in
- Must = At join point, property must hold on all paths that are joined
- May = At join point, property may hold on some paths that are joined

Topics

- Abstract syntax tree (AST)
- Control-flow graph (CFG)
- Control-flow-based code coverage
- Data-flow analysis
- Data-flow-based code coverage

Dataflow-based code coverage

- Why another family of code coverage?

Are test1 and test2 always identical?
Although the paths are the same, different tests may have different variable values defined/used!

- A family of dataflow criteria is then defined, each providing a different degree of data coverage
- Existing control-flow coverage criteria only consider the execution paths (structure)
- In the program paths, which variables are defined and then used should also be covered (data)

Def-clear path

- A path $\left\langle\mathbf{d}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}, \mathbf{u}\right\rangle$ is a def-clear path from \mathbf{d} to \mathbf{u} with respect to v if it has no variable re-definition of v on the path
- I.e., the definition of \mathbf{v} at \mathbf{d} can reach \mathbf{u}

DU-pair

- A DU-pair with respect to a variable \mathbf{v} is a pair (\mathbf{d}, \mathbf{u}) such that
- \mathbf{d} is a node defining \mathbf{v}
- \mathbf{u} is a node or edge using \mathbf{v}
- When it is a p -use of \mathbf{v}, \mathbf{u} is an outgoing edge of the predicate statement
- There is a def-clear path with respect to \mathbf{v} from \mathbf{d} to \mathbf{u}

(d, u1)
(d, u2)

DU-path

- A path $\left\langle\mathbf{n}_{1}, \ldots, \mathrm{n}_{\mathrm{j}}, \mathrm{n}_{\mathrm{k}}\right\rangle$ is a DU-path for variable \mathbf{v} if n_{1} contains a definition of v and either
- n_{k} is a c-use of v and $\left\langle n_{1}, \ldots, n_{j}, n_{k}\right\rangle$ is a def-clear simple path for v (all nodes, except possibly \mathbf{d} and \mathbf{u}, are distinct), or
- $\left\langle n_{j}, n_{k}\right\rangle$ is a p-use of v and $\left\langle n_{1}, \ldots, n_{j}\right\rangle$ is a def-clear loop-free path for x (all nodes are distinct)

Def-clear paths	DU paths
$1-2-3$	$1-2-3$
$1-2-3-2-3$	$1-2-3-2-3-$
$1-2-3-2-3-2-3$	$1-2-3-2-3-2-3-$
$1-2-3-2-3-2-3-2-3$	$1-2-3-2-3-2-3-2-3-$
\ldots	\ldots

Typical dataflow-based coverage

- Identify all DU pairs and construct test cases that cover these pairs
- Variations with different "strength"

All-DU-Paths

\square

All-Uses

All-Defs

Typical dataflow-based coverage: definitions

- All-DU-paths: for every du-pair (\mathbf{d}, \mathbf{u}) of every variable \mathbf{v}, cover all possible def-clear DU paths from \mathbf{d} to \mathbf{u}
- All-Uses: for every du-pair (\mathbf{d}, \mathbf{u}) of every variable \mathbf{v}, cover at least one def-clear path from \mathbf{d} to \mathbf{u}
- All-Defs: for each definition \mathbf{d} of each variable \mathbf{v}, cover at least one du-pair for \mathbf{d}

Typical dataflow-based coverage: example

du-pair	path(s)
$(1,2)$	$<1,2>$
$(1,4)$	$<1,3,4>$
$(1,5)$	$<1,3,4,5>$
	$<1,3,5>$
$(1,<3,4>)$	$<1,3,4>$
$(1,<3,5>)$	$<1,3,5>$
$(2,4)$	$<2,3,4>$
$(2,5)$	$<2,3,4,5>$
	$<2,3,5>$
$(2,<3,4>)$	$<2,3,4>$
$(2,<3,5>)$	$<2,3,5>$

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)
$(1,2)$	$<1,2>$
$(1,4)$	$<1,3,4>$
$(1,5)$	$<1,3,4,5>$
	$<1,3,5>$
$(1,<3,4>)$	$<1,3,4>$
$(1,<3,5>)$	$<1,3,5>$
$(2,4)$	$<2,3,4>$
$(2,5)$	$<2,3,4,5>$
	$<2,3,5>$
$(2,<3,4>)$	$<2,3,4>$
$(2,<3,5>)$	$<2,3,5>$

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)
$(1,2)$	$<1,2>$
$(1,4)$	$<1,3,4>$
$(1,5)$	$<1,3,4,5>$
	$<1,3,5>$
$(1,<3,4>)$	$<1,3,4>$
$(1,<3,5>)$	$<1,3,5>$
$(2,4)$	$<2,3,4>$
$(2,5)$	$<2,3,4,5>$
	$<2,3,5>$
$(2,<3,4>)$	$<2,3,4>$
$(2,<3,5>)$	$<2,3,5>$

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)
$(1,2)$	$<1,2>$
$(1,4)$	$<1,3,4>$
$(1,5)$	$<1,3,4,5>$
	$<1,3,5>$
$(1,<3,4>)$	$<1,3,4>$
$(1,<3,5>)$	$<1,3,5>$
$(2,4)$	$<2,3,4>$
$(2,5)$	$<2,3,4,5>$
	$<2,3,5>$
$(2,<3,4>)$	$<2,3,4>$
$(2,<3,5>)$	$<2,3,5>$

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)
$(1,2)$	$<1,2>$
$(1,4)$	$<1,3,4>$
$(1,5)$	$<1,3,4,5>$
	$<1,3,5>$
$(1,<3,4>)$	$<1,3,4>$
$(1,<3,5>)$	$<1,3,5>$
$(2,4)$	$<2,3,4>$
$(2,5)$	$<2,3,4,5>$
	$<2,3,5>$
$(2,<3,4>)$	$<2,3,4>$
$(2,<3,5>)$	$<2,3,5>$

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)	All-Defs
$(1,2)$	$<1,2>$	X
$(1,4)$	$<1,3,4>$	
$(1,5)$	$<1,3,4,5>$	
	$<1,3,5>$	
$(1,<3,4>)$	$<1,3,4>$	
$(1,<3,5>)$	$<1,3,5>$	
$(2,4)$	$<2,3,4>$	x
$(2,5)$	$<2,3,4,5>$	
	$<2,3,5>$	
$(2,<3,4>)$	$<2,3,4>$	
$(2,<3,5>)$	$<2,3,5>$	

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)	All-Defs	All-Uses
$(1,2)$	$<1,2>$	X	X
$(1,4)$	$<1,3,4>$		x
$(1,5)$	$<1,3,4,5>$		x
	$<1,3,5>$		
$(1,<3,4>)$	$<1,3,4>$		x
$(1,<3,5>)$	$<1,3,5>$		x
$(2,4)$	$<2,3,4>$	x	x
$(2,5)$	$<2,3,4,5>$		x
	$<2,3,5>$		
$(2,<3,4>)$	$<2,3,4>$		x
$(2,<3,5>)$	$<2,3,5>$		x

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)	All-Defs	All-Uses	All-DU-Paths
$(1,2)$	$<1,2>$	X	X	X
$(1,4)$	$<1,3,4>$		X	X
$(1,5)$	$<1,3,4,5>$		X	X
	$<1,3,5>$			X
$(1,<3,4>)$	$<1,3,4>$		X	X
$(1,<3,5>)$	$<1,3,5>$		X	X
$(2,4)$	$<2,3,4>$	X	X	X
$(2,5)$	$<2,3,4,5>$		X	X
	$<2,3,5>$			X
$(2,<3,4>)$	$<2,3,4>$		X	X
$(2,<3,5>)$	$<2,3,5>$		X	X

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

Typical dataflow-based coverage: example

du-pair	path(s)	Covered
$(1,2)$	$<1,2>$	X
$(1,4)$	$<1,3,4>$	
$(1,5)$	$<1,3,4,5>$	
	$<1,3,5>$	
$(1,<3,4>)$	$<1,3,4>$	
$(1,<3,5>)$	$<1,3,5>$	
$(2,4)$	$<2,3,4>$	x
$(2,5)$	$<2,3,4,5>$	x
	$<2,3,5>$	
$(2,<3,4>)$	$<2,3,4>$	x
$(2,<3,5>)$	$<2,3,5>$	

Test1: 1-2-3-4-5

Only All-Defs, needs more tests!

With respect to variable \mathbf{v}
(\mathbf{w} should be analyzed similarly)

More dataflow coverage

- All-P-Uses/Some-C-Uses: for each definition d of each variable \mathbf{v}, cover at least one def-clear path from \mathbf{d} to any p-use of \mathbf{v}
- If no p-use of \mathbf{v}, at least one def-clear path to one c-use of \mathbf{v} must be covered
- All-C-Uses/Some-P-Uses: for each definition \mathbf{d} of each variable \mathbf{v}, cover at least one def-clear path from \mathbf{d} to any c-use of \mathbf{v}
- If no c-use of \mathbf{v}, at least one def-clear path to one p-use of \mathbf{v} must be covered
- All-P-Uses: for each definition \mathbf{d} of each variable \mathbf{v}, cover at least one def-clear path from \mathbf{d} to any p -use of \mathbf{v}
- All-C-Uses: for each definition \mathbf{d} of each variable \mathbf{v}, cover at least one def-clear path from \mathbf{d} to any c-use of \mathbf{v}

Coverage subsumption graph

Interprocedural analysis

- So far, all the analyses we covered are intraprocedural
- Analyzing each function (a.k.a, method/procedure) separately
- However, real-world programs usually involve the connection of a large number of functions, thus we need interprocedural analysis:
- Call-graph analysis: analyzing the potential invocation relationship between different functions [Tip et al.]
- Interprocedural CFG: connecting intraprocedural CFGs with call-graph
- Interprocedural dataflow analysis: analyzing dataflow across functions [Reps et al.]
- Taint analysis: tracking how private information flows through the program and if it is leaked to public observers [Arzt et al.]
\square Tip et al., Scalable Propagation-Based Call Graph Construction Algorithms, 2000, OOPSLA
\square Reps et al., Precise Interprocedural Dataflow Analysis via Graph Reachability, 1987, POPL
\square Arzt et al., FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps, 2014, PLDI

Do I need to implement such basic program analyses from scratch?

- Java
- ASM (https://asm.ow2.io/)
- A lightweight bytecode-level analysis and manipulation framework
- Soot (https://github.com/soot-oss/soot)
- An Intermediate Representation (IR) level analysis and manipulation framework
- Wala (https://github.com/wala/WALA)
- An IR-level analysis and manipulation (via Shrike) framework for Java and JavaScript
- Eclipse JDT (https://www.eclipse.org/jdt/)
- A source-level code analysis and manipulation framework
- C/C++
- LLVM (http://Ilvm.org/)
- Highly customizable and modular compiler framework

Further readings

- Aho et al., Compilers: Principles, Techniques, and Tools (2nd Edition)
- Rapps and Weyuker. Selecting Software Test Data Using Data Flow Information. IEEE Transactions on Software Engineering, 11(4), April 1985, pp. 367-375
- Ferrante et al., The program dependence graph and its use in optimization, 1987, TOPLAS
- Horwitz et al., Interprocedural slicing using dependence graphs, 1988, PLDI

Thanks and stay safe!

