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Program analysis

• Is it correct?

• Is it robust?

• Is it safe?

• Is it optimizable?

• …
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Program
Analysis+ =

Program

Program analyzers aim to automatically analyze the behavior 
of computer programs regarding certain properties



How do we analyze arbitrary programs?
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Abstraction!

• Transform programs under analysis into structured code representations
• Easier parsing

• Easier modification

• Easier generation
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What code representations are used in a
typical compiler pass?
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Lexical Analysis

Parsing

Semantic Analysis

Optimization

Code Generation

Machine/byte code 

Source code



Lexical analysis
• Input: source code text (sequence of chars)

• Output: sequence of tokens
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while (y < z) { 
x = a + b; 
y += x; 

}

T_While
T_LeftParen
T_Identifier y 
T_Less
T_Identifier z 
T_RightParen
T_OpenBrace
T_Identifier x 
T_Assign
T_Identifier a 
T_Plus
T_Identifier b 
T_Semicolon
T_Identifier y 
T_PlusAssign
T_Identifier x 
T_Semicolon
T_CloseBrace

Lexical Analysis

Parsing

Semantic Analysis

Optimization

Code Generation

Machine/byte code 

Source code



Syntactic analysis
• Input: sequence of tokens from lexical analysis

• Output: abstract syntax tree (AST)
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Lexical Analysis

Syntactic Analysis

Semantic Analysis

Optimization

Code Generation

Machine/byte code 

Source code

while (y < z) { 
x = a + b; 
y += x; 

}

while

<

y z

block

= =

x +

a b

y +

y x



Semantic analysis
• Input: abstract syntax tree (AST)

• Output: annotated AST
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Lexical Analysis

Syntactic Analysis

Semantic Analysis

Optimization

Code Generation

Machine/byte code 

Source code

while (y < z) { 
x = a + b; 
y += x; 

}

while

<

y z

block

= =

x +

a b

y +

y x

void

voidbool

int int

int
int int int int

intintint

voidvoid

E⊦ e1: int E⊦ e2: int
E⊦ e1+e2: int

E⊦ e1: int E⊦ e2: int
E⊦ e1*e2: int

i is an integer literal
E⊦ i: int

x:T is in E
E⊦ x: T

…

Type checking rules



Optimization
• Input: original code representation

• Output: optimized code representation
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Lexical Analysis

Syntactic Analysis

Semantic Analysis

Optimization

Code Generation

Machine/byte code 

Source code

int a=1;
int b=1;
…
while (y < z) { 

x = a + b;
y += x;

} while(y<z)

x=a+b
y+=x

int a=1
int b=1

… Control-flow graph

Only
reaching

definitions

int a=1;
int b=1;
…
while (y < z) {  

y += 2;
}



Code generation
• Input: optimized code representation

• Output: final target code
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Lexical Analysis

Syntactic Analysis

Semantic Analysis

Optimization

Code Generation

Machine/byte code 

Source code

while (y < z) { 
x = a + b; 
y += x; 

}



Topics

• Abstract syntax tree (AST)

• Control-flow graph (CFG)

• Control-flow-based code coverage

• Data-flow analysis

• Data-flow-based code coverage
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How do we describe a programming language?
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Example program:
while (y < z) { 

x = a + b; 
y += x; 

}

A grammar covering this program and similar ones:
Stmt → WhileStmt | AssignStmt | CompoundStmt
WhileStmt → "while" "(" Exp ")" Stmt
AssignStmt → ID "=" Exp ";" 
CompoundStmt → "{" StmtList "}”
StmtList → " | Stmt StmtList
Exp → Less | Add | ID
Less → Exp "<" Exp 
Add → Exp "+" Exp



Context-free grammar
• A context-free grammar G = ⟨$, N, P, S⟩, where

• $: alphabet (finite set of symbols, or terminals)
• Often written in lowercase

• N: a finite, nonempty set of nonterminal symbols, N ∩$= ∅
• Often at least the first letter in UPPERCASE

• P: the set of production rules, each with the form X → Y1 Y2 …Yn
• where X∈ N, n≥ 0, and Yk∈ N∪$

• S: the start symbol (one of the nonterminals), i.e., S ∈ N
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Grammar (P):

E → E+E 
| E*E
| (E)
| id

$: +, * (, ), id
N: E
S: E

Grammar (P):

E → E+E 
E → E*E
E → (E)
E → id

=



Context-free grammar

14

Example program:
while (y < z) { 

x = a + b; 
y += x; 

}

A grammar covering this program and similar ones:
Stmt → WhileStmt | AssignStmt | CompoundStmt
WhileStmt → "while" "(" Exp ")" Stmt
AssignStmt → ID "=" Exp ";" 
CompoundStmt → "{" StmtList "}”
StmtList → " | Stmt StmtList
Exp → Less | Add | ID
Less → Exp "<" Exp 
Add → Exp "+" Exp

$: ID, “while”, “(”, “=”, “{”, …
N: Stmt, WhileStmt, …
S: Stmt



Context-free grammar: generating strings

• G defines a language L(G) over the alphabet $
• $* is the set of all possible sequences of $ symbols

• L(G) is the subset of $* that can be derived from the start symbol S, 
by following the production rules P

• A derivation is such a sequence of productions applied
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Grammar:

E → E+E 
| E*E
| (E)
| id

→ E+E 
→ E * E+E 
→ id * E + E 
→ id * id + E
→ id * id + id

E

Derivation

id
id * id
id * id + id
id * id + id *id
id + id + id + id
…

L(G)



Context-free grammar: parsing strings

• Checking if input string (e.g., code) s ∈ L(G), i.e., checking for acceptance
• Algorithm: Find a derivation starting from the start symbol of G to s
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Language grammar:

E → E+E | E*E | (E) | id 

id * id + id

→ E+E 
→ E * E+E 
→ id * E + E 
→ id * id + E 
→ id * id + id

E

Source

Derivation

E

E E+

E E*

id id

id

Parse tree



Abstract syntax tree (AST)
• Simplified syntactic representations derived from code parse tree

• Represents the abstract syntactic structure of a language construct 

• Usually the interior and root nodes represent operators, and the 
children of each node represent the operands of that operator
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ASTs differ from parse 
trees because superficial 
distinctions of form, 
unimportant for 
translation, do not 
appear in syntax trees…

E

E E+

E E*

id id

id

Parse tree

+

* id

id id

AST



AST: more examples
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Example program:
while (y < z) { 

x = a + b; 
y += x; 

}

WhileStmt

while (

Stmt

Exp

Less

Exp Exp

y z<

Stmt

Parse tree

…)

WhileStmt

StmtLess

y z

AST

…



AST: more examples
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AssignStmt

x =

Stmt

Exp

Add

Exp Exp

a b+ ;

Parse tree

AssignStmt

x Add

a b

AST

Example program:
while (y < z) { 

x = a + b; 
y += x; 

}



AST: more examples
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AssignStmt

y =

Stmt

Exp

Add

Exp Exp

y x+ ;

Parse tree

AssignStmt

y Add

y x

AST

Example program:
while (y < z) { 

x = a + b; 
y += x; 

}



AST: typical structures

21

AssignStmt

ID Exp

Assignment

Op

Exp Exp

Binary operator

Op

Exp

Unary operator

WhileStmt

Exp Stmt

Loop

IfStmt

Exp Stmt

Conditional check

Stmt

CompoundStmt

Stmt Stmt

Compound statement

Stmt…



Mapping between parse tree and AST

Production Semantic Rules
E → E1+E2 E.node = new Node(“+”,

E1.node, E2.node)

E → E1*E2 E.node = new Node(“*”,
E1.node, E2.node)

E → (E1) E.node = E1.node

E → id E.node = new Leaf(id,
id.entry)
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E

E E+

E E*

id id

id

Parse tree

+

* id

id id

AST



AST applications

• AST provides a basic model of source code, supporting reading,
modifying, and even generating source code in a systematic way

• Compilers

• Program analysis

• Source code instrumentation

• Automated program repair

• Code generation

• …
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Topics

• Abstract syntax tree (AST)

• Control-flow graph (CFG)

• Control-flow-based code coverage

• Data-flow analysis

• Data-flow-based code coverage
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Basic block

• A basic block is a sequence of straight-line code that can be entered 
only at the beginning and exited only at the end
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Building basic blocks:
1. Identify leaders :

• The first instruction in a procedure, or
• The target of any branch, or
• An instruction immediately following a branch

2. Gobble all subsequent instructions until the next 
leader

x = a
y=b*2
if(x>y)

X X



Basic block example

1

2

4

5

6

9

11
26

while (x < y) {
y = f (x, y);
if (y == 0) {

break;
} else if (y<0) {

y = y*2;
continue;

}
x = x + 1;

}
print (y);

1
2
3
4
5
6
7
8
9

10
11

Leaders

1: while (x<y)

2: y=f(x,y)
3: if(y==0)

4: break

5: else if(y<0)

6: y=y*2
7: continue

9: x=x+1

11: print(y)

Basic blocksProgram

Building basic blocks:
1. Identify leaders :

• The first instruction in a procedure, or
• The target of any branch, or
• An instruction immediately following a branch

2. Gobble all subsequent instructions until the next leader



Control-flow graph (CFG)

• A control-flow graph (CFG) is a rooted directed graph G=⟨N, E⟩
• N is the set of basic blocks

• E is the flow of control between basic blocks
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Building CFG:
1. Each CFG node represents a basic block
2. There is an edge from node i to j if

• Last statement of block i branches to the first 
statement of j, or

• Block i is immediately followed in program order 
by block j (fall through)

x = a
y=b*2
if(x>y)

x ++ y ++

return x+y

That said, as long as the execution of node i
could be followed by node j, connect them!



CFG example
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while (x < y) {
y = f (x, y);
if (y == 0) {

break;
} else if (y<0) {

y = y*2;
continue;

}
x = x + 1;

}
print (y);

1
2
3
4
5
6
7
8
9

10
11

Program 1: while (x<y)

2: y=f(x,y)
3: if(y==0)

4: break 5: else if(y<0)

6: y=y*2
7: continue

9: x=x+1

11: print(y)

CFG



Topics

• Abstract syntax tree (AST)

• Control-flow graph (CFG)

• Control-flow-based code coverage

• Data-flow analysis

• Data-flow-based code coverage

29



Control-flow-based code coverage

• Given the CFG, define a coverage target and write tests to achieve it
• Higher coverage=> more code portions tested=> potentially better tests!

• A practical way to measure test quality!
• Typical control-flow-based code coverage

• Statement coverage

• Branch coverage (aka decision coverage)

• Path coverage

• Condition coverage

• Modified condition/decision coverage (MCDC)

• …

30



Statement coverage

• Target: covering all CFG nodes
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1: while (x<y)

2: y=f(x,y)
3: if(y==0)

4: break 5: else if(y<0)

6: y=y*2
7: continue

9: x=x+1

11: print(y)

CFG

Test1: 1-11
Test2: 1-2-3-4-11
Test3: 1-2-3-5-9-1-11 

Are they covering all statements?

NO, statement coverage: 7/9,
statements 6 and 7 never covered!



Branch coverage (decision coverage)

• Target: covering all CFG edges

• Equivalent to covering all branches of the predicate nodes
• True and false branches of each if node

• The two branches corresponding to the condition of a loop

• All alternatives in a switch node

• Is branch coverage equivalent to statement coverage?
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if (x < y) {
x++;

}
return x;

Test1: x=1, y=2

Statement coverage: 3/3
Branch coverage: 1/2

if(x<y)

x++

return x



Path coverage
• Target: covering all possible paths on CFG

• Is path coverage equivalent to branch coverage?
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Test1: x=1, y=2
Test2: x=10, y=2

Branch coverage: 4/4
Path coverage: 2/4

if(x<y)if(x<y)

x++

if(x<10)

x++

return x

if(x<y)if(x<y)

x++

if(x<10)

x++

return x

if(x<y)if(x<y)

x++

if(x<10)

x++

return x

if(x<y)if(x<y)

x++

if(x<10)

x++

return x

The number of paths could be infinite (loops) or exponential (branches)!



Control-flow-based coverage: summary

• Path coverage strictly subsumes branch coverage

• Branch coverage in turn strictly subsumes statement coverage
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Path Coverage

Branch Coverage

Statement 
Coverage

Coverage subsumption graph



Topics

• Abstract syntax tree (AST)

• Control-flow graph (CFG)

• Control-flow-based code coverage

• Data-flow analysis

• Data-flow-based code coverage
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Data-flow analysis

• A framework for proving facts (e.g., reaching definitions) about 
programs

• Operates on control-flow graphs (CFGs), typically

• Works best on properties about how program computes 

• Based on all paths through program
• Including infeasible paths

36



Variable definition/use

• A program variable is defined whenever its value is modified:
• On the left-hand side of an assignment statement: y = 17
• In an input statement: read(y)
• As a call-by-reference parameter in a subroutine call: update(x, &y)

• A program variable is used whenever its value is read:
• P-use (predicate-use): use in the predicate of a branch statement

• C-use (computation-use): all other uses

37

if ( x > 0 ){
print(y); 

}

P-use

C-use



A typical analysis: reaching definitions

• A definition (statement) d of a variable v reaches
CFG node n if there is a path from d to n such that 
v is not redefined along that path

• Reaching definitions applications:
• Build use/def chains

• Constant propagation

• Loop invariant code motion

38

x = 5

y = x*2

Is this the only def of x reaching n?
Can we replace y=x*2 with y=10?

d

n

x = 1; y = 1

while(…)

a = x+y
…

…

Any other reaching definitions of x/y in the loop?
Can we move “a=x+y” out of the loop?

x = …

…

d

n

∉Def[x]



Reaching definitions: example
n IN[n] OUT[n]

B1

B2

B3

B4

B5
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d1: int j=1
if(…)

if(…)

d2: j=2

d3: j=1

d4: int m=2*j
return m

B1

B2

B3

B4

B5

∅ {d1}

{d1} {d1}

{d1} {d2}

{d1, d2} {d3}

{d1, d3} {d1, d3, d4}

Constant propagation can be applied to B5 as j is always 1!

IN[n]: set of facts (reaching definitions) at entry of node n 
OUT[n]: set of facts (reaching definitions) at exit of node n 



d: x=y+z

OUT[n] 

IN[n] 

Reaching definitions: transfer functions 
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IN[n] = ∪n’ ∈ predecessors(n) OUT[n’] 

n1 n2 n3

n

IN[n] 

OUT[n3] OUT[n2] OUT[n1] 

IN[n]=OUT[n1] ∪ OUT[n2] ∪ OUT[n3]

OUT[n] = (IN[n] - KILL[n]) ∪ GEN[n] 

n

OUT[n] 

IN[n] 

KILL[n] = a set of definitions killed by definitions in node n
GEN[n] = a set of locally available definitions in node n

KILL[n] = Def[x] − {d}, where Def[x] : set of all definitions of x
GEN[n] = {d}



Reaching definitions algorithm
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for (each node n):
IN[n] = OUT[n] = ∅

for (each node n): 

IN[n] = ∪ n’ ∈ predecessors(n) OUT[n’]
OUT[n] = (IN[n] - KILL[n]) ∪ GEN[n] 

Any issues?



Reaching definitions: example

n IN[n] OUT[n]

B1

B2

B3

B4

B5

42

d1: int j=1
if(…)

if(…)

d2: j=2

d3: j=1

d4: int m=2*j
return m

B1

B2

B3

B4

B5

∅ {d1}

{d1} {d1}

{d1} {d2}

{d1} {d3}

The IN set for B4 is incorrect (should be {d1,d2})!

Order
matters!



Reaching definitions algorithm: revised
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for (each node n):
IN[n] = OUT[n] = ∅

repeat:
for (each node n): 

IN[n] = ∪ n’ ∈ predecessors(n) OUT[n’]
OUT[n] = (IN[n] - KILL[n]) ∪ GEN[n] 

until fixed point: IN[n] and OUT[n] stop changing for all n 



Reaching definitions: revisit the example

n GEN[n] Kill[n] IN[n] OUT[n]

B1

B2

B3

B4

B5
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d1: int j=1
if(…)

if(…)

d2: j=2

d3: j=1

d4: int m=2*j
return m

B1

B2

B3

B4

B5

∅ {d1}

{d1} {d1}

{d1} {d2}

{d1, d2} {d3}

{d1, d3} {d1, d3, d4}

{d1} {d2, d3}

∅∅
{d2} {d1, d3}

{d3}

{d4} ∅

IN[n] = ∪n’ ∈ predecessors(n) OUT[n’] 

OUT[n] = (IN[n] - KILL[n]) ∪ GEN[n] 

{d1, d2}

IN[n] = a set of reaching definitions before n
OUT[n] = a set of reaching definitions after n
KILL[n] = a set of definitions killed by definitions in node n

GEN[n] = a set of locally available definitions in node n



Does it always terminate?
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The two operations of reaching 
definitions analysis are monotonic

IN and OUT cannot grow forever

IN and OUT will stop changing after some iteration

IN and OUT sets never shrink, only grow

Largest they can be is set of all 
definitions in program, i.e., finite

IN[n] = ∪n’ ∈ predecessors(n) OUT[n’] OUT[n] = (IN[n] - KILL[n]) ∪ GEN[n] 



Other classical dataflow analyses

• Live Variables Analysis: for dead code elimination
• Determine for each program point which variables could be live at the point’s exit

• A variable is live if there is a path to a use of the variable that doesn’t redefine the 
variable

• Available Expressions Analysis: for avoiding recomputing expressions 
• Determine, for each program point, which expressions must already have been 

computed, and not later modified, on all paths to the program point

• Very Busy Expressions Analysis: for reducing code size 
• An expression is very busy if, no matter what path is taken, the expression is used 

before any of the variables occurring in it are redefined

46



x=y+z

OUT[n] 

IN[n] 

Live variables: transfer functions 
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OUT[n] = ∪n’ ∈ successors(n) IN[n’] 

n1 n2 n3

n
OUT[n] 

IN[n3] IN[n2] IN[n1] 

OUT[n]=IN[n1] ∪ IN[n2] ∪ IN[n3]

IN[n] = (OUT[n] - KILL[n]) ∪ GEN[n] 

n

OUT[n] 

IN[n] 

KILL[n] = a set of variables defined in node n
GEN[n] = a set of variables used in node n

KILL[n] = {x}

GEN[n] = {y, z}



Live variables analysis: example
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d1: int j=1
if(…)

if(…)

d2: j=2

d3: j=1

d4: int m=2*j
return m

B1

B2

B3

B4

B5

n GEN[n] Kill[n] IN[n] OUT[n]

B1

B2

B3

B4

B5

∅ {j}

∅ ∅
∅ ∅
∅ {j}

{j} ∅

∅ {j}

∅∅
∅ {j}

∅
{j} {m}

OUT[n] = ∪n’ ∈ succcessors(n) IN[n’] 

IN[n] = (OUT[n] - KILL[n]) ∪ GEN[n] 

{j}

IN[n] = a set of live variables before n
OUT[n] = a set of live variables after n
KILL[n] = a set of variables defined in node n

GEN[n] = a set of variables used in node n



Reaching definitions vs. live variables

• Facts: set of definitions

• Direction: forward

• Join operator: ∪
• Transfer functions:

• IN[n] = ∪n’ ∈ predecessors(n) OUT[n’]  

• OUT[n] = (IN[n] - KILL[n]) ∪ GEN[n] 
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• Facts: set of variables

• Direction: backward

• Join operator: ∪
• Transfer functions:

• OUT[n] = ∪n’ ∈ succcessors(n) IN[n’] 

• IN[n] = (OUT[n] - KILL[n]) ∪ GEN[n] 

Reaching definitions Live variables



Classifying all four dataflow analyses 

• Forward = Data flow from in to out

• Backward = Data flow from out to in

• Must = At join point, property must hold on all paths that are joined

• May = At join point, property may hold on some paths that are joined 

50

May Must

Forward Reaching Definitions Available Expressions 

Backward Live Variables Very Busy Expressions 



Topics

• Abstract syntax tree (AST)

• Control-flow graph (CFG)

• Control-flow-based code coverage

• Data-flow analysis

• Data-flow-based code coverage

51



Dataflow-based code coverage
• Why another family of code coverage?

• A family of dataflow criteria is then defined, each providing a different 
degree of data coverage

• Existing control-flow coverage criteria only consider the execution paths
(structure)

• In the program paths, which variables are defined and then used should also 
be covered (data)

52

Are test1 and test2 always identical?

CFG
Although the paths are the same, different tests may have 
different variable values defined/used!



Def-clear path

• A path ⟨d, n1, …, nm, u⟩ is a def-clear path from d to u with respect to 
v if it has no variable re-definition of v on the path

• I.e., the definition of v at d can reach u

53

v = …

…=v

d

u

∉Def[v]

Def-clear
path



DU-pair

• A DU-pair with respect to a variable v is a pair 
(d,u) such that

• d is a node defining v
• u is a node or edge using v

• When it is a p-use of v, u is an outgoing edge of the 
predicate statement

• There is a def-clear path with respect to v from d
to u

54

d

u

c-use

∉Def[v]

def

c-use

d

u2u1

p-use

∉Def[v]

def

p-use

Du pair:
(d, u) Du pairs:

(d, u1)
(d, u2)



DU-path

• A path ⟨n1, …, nj, nk⟩ is a DU-path for variable v if n1 contains a 
definition of v and either 

• nk is a c-use of v and ⟨n1, …, nj, nk⟩ is a def-clear simple path for v (all nodes, 
except possibly d and u, are distinct), or 

• ⟨nj, nk⟩ is a p-use of v and ⟨n1, …, nj⟩ is a def-clear loop-free path for x (all 
nodes are distinct) 
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while(w<10)

w+=v

return w  

read(v,w)B1

B2

B3

B4

Def-clear paths
1-2-3

1-2-3-2-3

1-2-3-2-3-2-3

1-2-3-2-3-2-3-2-3

…

DU paths
1-2-3

1-2-3-2-3

1-2-3-2-3-2-3

1-2-3-2-3-2-3-2-3

…



Typical dataflow-based coverage

• Identify all DU pairs and construct test cases that cover these pairs
• Variations with different “strength”

56

d1

d2

d3

…

u1

u2

u3

…

All-DU-Paths

d1

d2

d3

…

u1

u2

u3

…

All-Uses All-Defs

d1

d2

d3

…

u1

u2

u3

…



Typical dataflow-based coverage: definitions

• All-DU-paths: for every du-pair (d, u) of every variable v, cover all 
possible def-clear DU paths from d to u

• All-Uses: for every du-pair (d, u) of every variable v, cover at least one 
def-clear path from d to u

• All-Defs: for each definition d of each variable v, cover at least one 
du-pair for d

57



Typical dataflow-based coverage: example

58

if(v>10)

w+=v+w

output(v,w)

input(v, w)
if(w>1)

B1

B2

B5

v=v+7

B3

B4
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(2,4) <2,3,4> X X X
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(2,<3,4>) <2,3,4> X X
(2,<3,5>) <2,3,5> X X

With respect to variable v
(w should be analyzed similarly)
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if(v>10)

w+=v+w

output(v,w)

input(v, w)
if(w>1)

B1

B2

B5

v=v+7

B3

B4

du-pair path(s) Covered All-Uses All-DU-Paths
(1,2) <1,2> X X
(1,4) <1,3,4> X X
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<1,3,5> X
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With respect to variable v
(w should be analyzed similarly)

Test1: 1-2-3-4-5

Only All-Defs,
needs more tests!

X

X

X

X



More dataflow coverage
• All-P-Uses/Some-C-Uses: for each definition d of each variable v, 

cover at least one def-clear path from d to any p-use of v
• If no p-use of v, at least one def-clear path to one c-use of v must be covered

• All-C-Uses/Some-P-Uses: for each definition d of each variable v, 
cover at least one def-clear path from d to any c-use of v

• If no c-use of v, at least one def-clear path to one p-use of v must be covered

• All-P-Uses: for each definition d of each variable v, cover at least one 
def-clear path from d to any p-use of v

• All-C-Uses: for each definition d of each variable v, cover at least one 
def-clear path from d to any c-use of v
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Coverage subsumption graph
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Interprocedural analysis

• So far, all the analyses we covered are intraprocedural
• Analyzing each function (a.k.a, method/procedure) separately

• However, real-world programs usually involve the connection of a large
number of functions, thus we need interprocedural analysis:

• Call-graph analysis: analyzing the potential invocation relationship between
different functions [Tip et al.]

• Interprocedural CFG: connecting intraprocedural CFGs with call-graph

• Interprocedural dataflow analysis: analyzing dataflow across functions [Reps et al.]

• Taint analysis: tracking how private information flows through the program and if it 
is leaked to public observers [Arzt et al.]
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q Tip et al., Scalable Propagation-Based Call Graph Construction Algorithms, 2000, OOPSLA
q Reps et al., Precise Interprocedural Dataflow Analysis via Graph Reachability, 1987, POPL
q Arzt et al., FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps, 2014, PLDI



Do I need to implement such basic program
analyses from scratch?
• Java

• ASM (https://asm.ow2.io/)
• A lightweight bytecode-level analysis and manipulation framework

• Soot (https://github.com/soot-oss/soot)
• An Intermediate Representation (IR) level analysis and manipulation framework

• Wala (https://github.com/wala/WALA)
• An IR-level analysis and manipulation (via Shrike) framework for Java and JavaScript

• Eclipse JDT (https://www.eclipse.org/jdt/)
• A source-level code analysis and manipulation framework

• C/C++
• LLVM (http://llvm.org/)

• Highly customizable and modular compiler framework
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Further readings

• Aho et al., Compilers: Principles, Techniques, and Tools (2nd Edition)

• Rapps and Weyuker. Selecting Software Test Data Using Data Flow 
Information. IEEE Transactions on Software Engineering, 11(4), April 
1985, pp. 367-375 

• Ferrante et al., The program dependence graph and its use in 
optimization, 1987, TOPLAS

• Horwitz et al., Interprocedural slicing using dependence graphs, 1988, 
PLDI
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Thanks and stay safe!
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